

Biosphere-Atmosphere exchange of trace gases: Long-term measurements at the Höglwald site and climate change effects on alpine grassland

Michael Dannenmann, Klaus Butterbach-Bahl, Rainer Gasche, Hans Papen, Hans-Peter Schmid, Sebastian Unteregelsbacher, Benjamin Wolf, et al.

Some questions, which have been and will be adressed at the TERENO sites Höglwald and in the Ammer catchment

- Does silvicultural management affect the pedosphere-atmosphere exchange of non-CO₂ greenhouse gases (GHG), i. e. methane (CH₄) and nitrous oxide (N₂O)?
- How pronounced is the intra- and interannual variability of pedosphere-atmosphere-exchange of CH₄ and N₂O?
- How may climate change affect non-CO₂ GHGes in alpine grasland
 → first results of the FORKAST project situated at the TERENO alpine observatory
- → Do we need both *long-term* and *high temporal resolution* measurements to investigate biosphere-atmosphere exchange of GHGes at the TERENO large lysimeters?

CO₂, CH₄ and N₂O: atmospheric increase and biogenic sources

CH_4 , CO_2 and N_2O as greenhouse gases

Radiative forcing of climate by long-lived greenhouse gases between 1750 and 2005. IPCC, 2007

GHG	Lifetime (years)	Radiative efficiency [W m ⁻² ppb ⁻¹]	100-yr-global warming potential
CO ₂	variable	1.4x10 ⁻⁵	1
CH_4	12	3.7x10 ⁻⁴	25
N ₂ O	114	3.03x10 ⁻³	298

Lifetimes, radiative efficiencies and global warming potential of CH_4 and N_2O relative to CO_2 . IPCC, 2007.

ASSOCIATION

Apart from radiative forcing: N₂O is the dominant ozone-depleting substance today and in future

→ The recovery of the stratospheric ozone hole will be dependent on future N_2 O emission in the 21st century

The Höglwald long-term flux data set: 15 years of automated measurements of soil-atmosphere exchange of CO₂, N₂O, CH4

Fully automated static chambers with onlinegaschromatographic analysis of CO₂, N₂O, CH₄ Temporal resolution: 2 hours

Is forest management a neglected source for non-CO₂ GHGes?

Forest:

Location:

Elevation:

Mean annual temperature:

Mean annual precipitation:

Vegetation zone:

Climate:

Soil type:

Humus type:

pH in CaCl₂:

Spruce control

Selective cutting

Clearcut

Approx. 100-yr-old spruce

Temperate broad-leaf zone

Typic Hapludalf (USGS) Dystric Cambisol (FAO)

(1984-2001)

11°11'E, 48°30'N

540 m.a.s.l.

Suboceanic

Moder (~7 cm)

< 3 (organic layer) < 4 (A horizon)

7.7 °C

933 mm

HELMHOLTZ

Clear cutting significantly decreased the CH₄ sink strength of the Höglwald soil for more than 7 years

Clear cutting strongly increased N₂O emissions for 7

Höglwald flux data illustrate the need for long-term measurements (in particular concerning N₂O)

-RFI

Bundesministerium für Bildung und Forschung

High variability of N₂O fluxes is caused by the multitude of complex controls and drivers

HELMHOLTZ ASSOCIATION

Butterbach-Bahl and Dannenmann 2011, Current Opinion in Environmental Sustainability, in press

Do we have to expect freeze-thaw peaks of N₂O fluxes also at the TERENO alpine grasland sites?

Inner Mongolian continental grasland: Short-lived N_2O pulse emissions in the freeze thaw period can account for up to 80% of the annual N_2O flux Wolf et al. 2010, Nature

Huge diurnal variations of N_2O emissions during the freeze thaw period

Wolf et al. 2010, Nature (Supplementary material)

500

Climate change and freeze-thaw N₂O emissions in alpine grassland – what do we expect?

Climate change \rightarrow reduced snow cover \rightarrow colder soils in a warmer world \rightarrow smaller freeze-thaw pulse emissions of N₂O

→ Long-term measurements and high temporal resolution needed at TERENO large lysimeters

FORKAST project situated at the TERENO pre-alpine observatory sites

Funded by the Bavarian government

FORK

Dislocation of lysimeters along climatic gradient to simulate climate change, GHG-exchange measurements

Small soil cores/mini lysimeters diam. 16.4 cm, 25 cm height

Years 2009-2012

Large lysimeters

Long-term observatory

Bayerischer Forschungsverbund Auswirkungen des Klimas auf Ökosysteme und klimatische Anpassungsstrategien Isotope-based process studies Destructive harvests >400 soil cores/mini lysimeters

FORKAST: N₂O fluxes

Manual sampling of chamber headspace with syringes \rightarrow gas chromatographic analysis of CH₄ and N₂O

→ Temporal resolution approx. fortnightly

No effect of lysimeter dislocation on N_2O fluxes visible after 1.5 years,

But: freeze-thaw peak?

FORKAST: Net CH₄ uptake immediately increases after lysimeter dislocation

Summary

- Forst management (in particular clear cutting) can be a significant source of non CO₂-greenhouse gases
- Pedosphere-atmosphere exchange of methane and, in particular, nitrous oxide is characterized by enormous temporal variablity from hourly to interannual scales
- CH₄ emissions in alpine grasland show fast response to simulated climate change via lysimeter transfer (increased CH₄ sink strength under climate change conditions)
- Both *long-term measurements* and *high temporal resolution* are indispensable prerequisites to draw conclusions on pedosphereatmosphere exchange of C and N trace gases (in particular for N₂O) and to calculate the total GHG balance of ecosystems......

