

Polarimetric Remote Sensing of Soil Moisture within TERENO

Thomas Jagdhuber¹ & Irena Hajnsek^{1,2}

¹Microwaves and Radar Institute, Pol-InSAR Research Group, DLR ²Institute of Environmental Engineering, Earth Observation, ETH Zurich

TERENO Advisory Board Meeting, September, 26-27, 2011, Rur Catchment, Germany

E-SAR and F-SAR – Versatile Tools for Airborne Active Microwave Remote Sensing

E-SAR were and F-SAR is operated onboard DLR's DO228-212 D-CFFU by the Microwaves and Radar Institute in cooperation with DLR's Flight Facilities based in Oberpfaffenhofen.

Ground Measurements 2008: Soil Moisture [vol. %]

Polarimetric Decompositions for Soil Moisture Inversion

Removal of vegetation component and inversion for soil moisture

Soil Moisture Estimation under Vegetation with Polarimetric SAR?

One solution: Estimation with polarimetric decompositions

Separation of vegetation from soil surface and dihedral

Molumatizete Ratylic & A Barrangerom Settenades echdes baite osition

Physically-constraint hybrid polarimetric decomposition

Physically Constraint Hybrid Polarimetric Decomposition

Inversion for Soil Moisture from Surface Component

ASSOCIATION

Results for Soil Moisture Inversion (Selhausen)

Results for Soil Moisture Inversion (Rollesbroich)

ASSOCIATION

Validation for 3 Corp Types

Validation for all fields of Selhausen

Summary and Outlook

Soil moisture estimation under vegetation cover has been performed:

- The hybrid polarimetric decomposition including physical constraints has been successfully applied on the Rur Observatory (subsets Selhausen & Rollesbroich)
- The developed approach results in a inversion rate of >90% for both test sites over agriculture (forest still critical)
- Soil moisture inversion results are obtained for a variety of crop types with a RMSE < 6vol. % and a STDDEV < 3vol. %.</p>

Further investigations:

- > Hybrid model improvement (focus on the volume part)
- > Investigation on steep incidence regions
- > Investigation of dihedral scattering component (α_d) for soil moisture inversion

TERENO F-SAR Airborne Campaign 2011 @ Rur, Bode and Ammer catchments operated by DLR, FZJ, UFZ and KIT

TERENO Advisory Board Meeting, September, 26-27, 2011, Rur Catchment, Germany

Thomas.Jagdhuber@dlr.de, Irena.Hajnsek@dlr.de

F-SAR L-Band Subsystem (2011)

- up/down converter with chirp
- antenna front end
- system control
- power supply
- high power
 amplifier (HPA)

F-SAR High-Gain L-Band Antenna

Noise Equivalent σ_0

Overview of TERENO Campaign 2011

DLR's SAR Sensor: F-SAR

Frequency L-band Fully polarimetric Spatial Resolution (r/a): 2mx0.6m Date: KW 21-22 (23.05.-03.06.2011)

TERENO Observatories

Ammer - KIT Bode – UFZ/WESS Rur – FZJ

Ground Measurements

were conducted by the research institutes of the observatories. DLR supported for the Ammer and the Bode catchment.

	Catchment		Date		Data acquisition @ local time	No. of scenes
m	Rur		30/05/2011		09:35-12:26	13
	Bode		31/05/2011		09:12-10:41	8
	Ammer		07/06/2011		10:26-11:33	6
Catchment		Date		Ground measurements		
Rur		30/05/2011		Soil moisture (cluster, mobile probes), soil roughness (Laser- profiler), vegetation height, biomass, LAI		
Bode		31/05/2011		Soil moisture (mobile probes, EMI), soil roughness (Laser- scanning) vegetation height, phenology, biomass, VWC, LAI		
Ammer		07/06/2011		Soil moisture (mobile probes)		

Test site – Bode Watershed

Flight strip of F-SAR: 10 x 3 km Field measurements by UFZ/WESS/DLR: Soil moisture (FDR [6cm], EMI [experimental]) Soil roughness (Laser scanning [experimental]) Vegetation (height, phenology, biomass, VWC, LAI)

• Magdeburg

Sachsen-Anha

• Halle (Saale)

Google

corner reflectors

Test site – Ammer/Rott Wa Flight strip of F-SAR: 11 x 3 km Field measurements by KIT/DL (mobile FDR/TDR probes)

Rott catchment

Tracks for mobile soil moisture probes

Weilheim

Test site – Rur Watershed

Triangular Flight configuration: Yellow AOI ares: 5 x 3 km (2) and 10 x3 km Field measurements by FZJ: Soil moisture, Vegetation SoilNet (grassland (Rollesbroich), forest (Wüstebach)) Active/passive arc experiment, Mobile TDR/FDR probes (Merzenhausen)

Simmerath

Rollesbroich

Wästebach

F-SAR Flight Strip

Fors

Wüstebach

Triangular flight configuration

Selhausen

Forschungszentrum Jülich

Rollespeciel

Acknowledgement to the

FIP IT FIFTHERE

TERRESTRIAL ENVIRONMENTAL OBSERVATORIES

Campaign Team

Page 21

hause

ur Catch

Research Station Wüstebach (National Park Eifel)

hause

Research Station Höglwald (FZK)

r Catch

Biosphere

ale Catchment

Nieder