

Validation of Distributed Soil Moisture: Airborne Polarimetric SAR vs. Ground-based Sensor Networks Thomas Jagdhuber¹, Irena Hajnsek^{1,2}& Kostas Papathanassiou¹

¹Microwaves and Radar Institute, Pol-InSAR Research Group, DLR ²Institute of Environmental Engineering, Earth Observation, ETH Zurich HELMHOLTZ

TERENO Advisory Board Meeting, October, 25-26, 2012, Scheyern, Germany

Thomas.Jagdhuber@dlr.de, Irena.Hajnsek@dlr.de

Eifel Observatory: Rur Catchment

Triangular Flight Configuration

Yellow measurement areas: 5 x 3 km (3) and 10 x3 km

Field Measurements: Soil Moisture, Vegetation SoilNet (grassland (Rollesbroich), forest (Wüstebach)) Mobile FDR probes (Merzenhausen, Selhausen)

Triangular Flight Configuration of F-SAR

2

Rollesbroich Test Site in the Upper Eifel Mountain Range

Merzenhausen Test Site in the Rur River Valley

In Situ Measurments on Agricultural Fields

Polarimetric Decompositions for Soil Moisture Inversion

Removal of Vegetation Component and Inversion for Soil Moisture

 $\alpha_{\rm s}$

Retrieval of the Ground Scattering Components

Hybrid Polarimetric Decomposition

Eigen-based Decomposition of Ground Components

 \Box From eigenvalues: Intensity of ground (f_d, f_s)

 \square From eigenvectors: Scattering mechanisms of ground (α_d, α_s)

Physically Meaningful Separation of Scattering Mechanisms (α_d, α_s)

$$\alpha_{d} + \alpha_{s} = \pi/2 \qquad \longrightarrow \qquad \begin{cases} \alpha \in [0, \pi/4] & \text{Surface scattering} & \longrightarrow & \alpha_{s} \\ \alpha \in [\pi/4, \pi/2] & \text{Dihedral scattering} & \longrightarrow & \alpha_{d} \end{cases}$$

Orthogonality condition

Soil Moisture Inversion from Surface Scattering Component

Polarimetric SAR data

Surface scattering component from hybrid polarimetric decomposition

$$\beta = -\tan(\alpha_s)$$

Surface scattering model

Bragg scatter modeling with θ_{loc} and a variety of soil dielectric constants ε_{s} $\beta_{m} = \frac{R_{HH} - R_{VV}}{R_{HH} + R_{VV}}$

$$R_{HH}, R_{VV} = f(\varepsilon_S, \theta_{loc})$$

Validation of PolSAR-Derived Soil Moisture with Ground Measurements @ Merzenhausen (Rur) on Agriculture

Validation of PolSAR-Derived Soil Moisture with SoilNet cluster @ Rollesbroich (Rur) on Grassland

Validation of PolSAR-Derived Soil Moisture with Ground Measurements @ Schäfertal (Bode) on Agriculture/Grassland

Summary and Conclusion

- Inversion of soil moisture under agricultural vegetation is feasible in high resolution with very high inversion rates using decomposition and inversion techniques on polarimetric SAR data @ L-band.
- Validation with ground-based sensors (FDRs, SoilNet) revealed a well agreement with the SAR-based moisture estimates resulting in an RMSE of 3-6vol.% for low wetness conditions.
- Further investigations on different hydrological situations (highly saturated soils).
- Pattern comparison between interpolated ground-based (FDR, SoilNet, GPR) and PolSAR-based soil moistures – similarities and differences between spatial distributions of the soil moisture results.
- Performance analyses on the retrieval algorithm for the TERENO 2012 campaign sites.

Page 13