

Liberté Égalité Fraternité

Research team

- ¹ INRAE Institut Agro, UMR SAS, 35000 Rennes, France
- ² Geosciences Rennes, 35000 Rennes, France
- ³ UMR ECOBIO, CNRS Université de Rennes, 35000 Rennes, France

Spatial variability in C-N-P concentrations during the fragmentation of an intermittent stream in a small temperate oceanic agricultural catchment

Andrés Casanova¹, Rémi Dupas¹, Anne Jaffrezic¹, Laurent Jeanneau², Alexandrine Pannard³, Ophélie Fovet¹

Context

- Intermittent temperate streams in catchments are poorly studied [1].
- Lack of knowledge on C-N-P dynamics in agricultural catchments and intensive intermittent headwater streams.

Objectives

- Quantify spatial variability in C-N-P concentrations during stream fragmentation.
- Analyse patterns in C-N-P concentrations in flowing stream stretches and isolated pools (IP) [2].

Materials and methods

INRAQ

ECOLOGIE

DOCTORAL

GEOSCIENCES

AGRONOMIE ALIMENTATION

Rennes

Angers

- <u>Study site:</u> Kervidy-Naizin catchment, 7km² [3].
- <u>Sampling:</u> ~40 points sampled 3 times during flow recession (spring-summer 2023). • Laboratory analysis: Major anions, NO₃⁻, DOC, TP, PO₄³⁻

• Physico-chemical parameters: Conductivity, redox potential, 3D fluorescence, T°, DO, pH

Results

	Spatial Coefficient of Variation			Stream fragm
CL	7.72	<u>22/08/2023</u> 8.84	10.89	increased fron
NO ₃	14.75	41.78	65,61	ctrotoboc
SO4	36.50	46.64	52,28	Stretches.
ТР	43.59	66.16	73.75	During stream fr
Si	14.86	17.24	22.33	• Snatial va
DOC	26.54	40.76	49.08	
Conduc	22.02	12.57	10.29	concentrations
pH	5.66	3.81	3.67	most wat
Redox	140.08		23.52	
DO	9.51	26.01	43.47	parameters (I
T	8.63	6.05	7.47	DOC, NO_{2}^{-} , and

• During the three field campaigns, DOC concentrations exhibited a consistent spatial distribution, characterized by high values upstream and low values downstream. Conversely, NO_3^- displayed an inverse pattern (r=-0.91, p<0.05). • Dissolved oxygen showed a noticeable decrease over time (E) suggesting an increase in the rate of microbial metabolism.

• In IP, the concentrations of DOC and TP showed an upward trend, while NO₃⁻ concentrations seemed to decrease (**F**).

Conclusions and

- Stream fragmentation suggests a prevalence of subsurface flow dynamics in upstream region.
- The IP act as accumulators for solutes concentrations, particularly DOC and TP [4], meanwhile, NO_3^- is reduced via denitrification.
- IP are exposed to varying conditions, leading to divergent evolutions in solute concentrations. Redox processes seems to play a significant role in this concentrations changes. • The rewetting phase of the catchment will be assessed in a subsequent campaign.

perspectives

2nd TERENO-OZCAR Conference Bonn, 2023

[1] Datry, T., Bonada, N., Boulton, A.J., 2017. General Introduction. Intermittent Rivers and Ephemeral Streams, pp. 1-20. [2] Arce, M.I., Sánchez-Montoya, M.d.M., Gómez, R., 2015. Nitrogen processing following experimental sediment rewetting in isolated pools in an agricultural stream of a semiarid region. Ecological Engineering 77, 233-241, 10.1016/j.ecoleng.2015.01.035. [3] Fovet, O., Ruiz, L., Gruau, G., Akkal, N., Aquilina, L., Busnot, S., Dupas, R., Durand, P., Faucheux, M., Fauvel, Y., Fléchard, C., Gilliet, N., Grimaldi, C., Hamon, Y., Jaffrezic, A., Jeanneau, L., Labasque, T., Le Henaff, G., Mérot, P., Molénat, J., Petitjean, P., Pierson-Wickmann, A.-C., Squividant, H., Viaud, V., Walter, C., Gascuel-Odoux, C., 2018. AgrHyS: An Observatory of Response Times in Agro-Hydro Systems. Vadose Zone Journal 17, 1-16, 10.2136/vzj2018.04.0066.

[4] Bonada, N., Cañedo-Argüelles, M., Gallart, F., von Schiller, D., Fortuño, P., Latron, J., Llorens, P., Múrria, C., Soria, M., Vinyoles, D., Cid, N., 2020. Conservation and Management of Isolated Pools in Temporary Rivers. Water 12,

Acknowledgments:

We thank François M., Purco R. & Lorenzo R., for the assistance during the field trips, and to Céline B. & Mikaël F. for their assistance on the lab work and the equipment preparation.

UMR 1069 SAS - Sol, Agro et hydrosystème, Spatialisation 65 rue de Saint-Brieuc, CS 84215, 35042 Rennes Cedex T. +33 (0)2 23 68 54 28 institut-agro.fr/rennes-angers