JÜLICH Forschungszentrum Forschungszentrum Long-term response and adaptation of farmland water, carbon and nitrogen balances to climate change in arid to semi-arid regions

Y. Li^{*1,2,3}, M. Herbst³, Z. Chen^{1,2}, X. Chen^{1,2}, X. Xu^{1,2}, Y. Xiong^{1,2}, Q. Huang^{1,2}, G. Huang^{1,2}

(1) Chinese-Israeli International Center for Research and Training in Agricultural University, Beijing 100083, China; (2) Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; (3) Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich 52425, Germany *Contact: y.li@fz-juelich.de

Motivation

- Climate change poses a challenge for resource utilization and environmental pollution issues caused by agricultural production, especially in arid to semi-arid regions.
- Farmland water, carbon and nitrogen balances (WCNBs) are closely related to these resource and environmental issues.

Objectives and hypothesis

The main objective of this study was to assess the response of the characteristics of farmland WCNBs to future climate change in the arid to semi-arid regions; and to devise appropriate compensation strategies to deal with the negative impacts (e.g., low crop N uptake, carbon

- Global climate change is accelerating, such as increases in atmospheric CO₂ concentrations and temperature as well as precipitation changes, which will significantly affect WCNBs.
- Appropriate strategies obtained in previous studies may not adapt to future climate change, but instead have negative impacts on the sustainable development of farmland ecosystems.

Materials and methods

Fig.1. Location of field experiment. From 2019 to 2020, soil moisture content, NO₃-N and NH₄+-N contents, CO₂, CH₄, N₂O and NH₃ fluxes, and NO₃⁻-N and NH₄⁺N leaching were collected under different irrigation depths and nitrogen fertilization amounts conditions

assimilation and farmland carbon sinks, and high soil water percolation, carbon emissions and nitrogen leaching) of climate change on farmland WCNBs in study region.

Our hypothesis was that a field scale study provides response and adaptation results of farmland WCNBs to climate change which is representative for a large area.

Table 1. Five GCM from CMIP6				
GCM ID	Name	Abbreviation	Country	Spatial Resolution (lat°×lon°)
2	ACCESS-ESM1-5	ACC2	Australia	1.2×1.8
4	CanESM5	Can1	Canada	2.8×3.8
15	GFDL-ESM4	GFD2	America	1.0×1.3
16	GISS-E2-1-G	GISS	America	2.0×2.5
23	MPI-ESM1-2-HR	MPI1	Germany	0.9×0.9

Salt/Nutrient balance

Soil water balance

Crop growth/yield Leaf area index Root growth

Soil moisture Percolation/Capillary ri

Evaporation

Transpiratio

C/N uptake

Fig.2 Atmospheric CO₂ concentration

- Simulation period: 2025-2100, Base year: 2020
- Soil water consumption (ΔW)
- $\Delta W = ET_a + R + F I P_e$
- ET_a -actual crop evapotranspiration
- R-surface runoff
- *F* deep percolation
- I-irrigation water
- $P_{\rm e}$ precipitation
- Net ecosystem carbon budget (NECB)

 $NECB = NPP + C_f - (R_s + C_h)$

NPP-crop net primary production

AHC model

 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

Water uptake Water stress

1D Finite different

-First-order kinetic processe

Ground water flow and mass transport modul

Nutrient Salt/Nutrient stress

 C_{f} carbon input caused by fertilization $R_{\rm s}$ - soil CO₂ emissions C_h -carbon output caused by grain

Analysis results

Years

Years

Years

Fig. 2. Farmland WCNBs characteristics during spring wheat growing seasons under the SSP5-8.5 scenarios from 2025 to 2100.

Conclusions and outlook

- Precipitation showed an increasing trend, thus percolation increased and soil water consumption decreased from 2025 to 2100.
- Although the soil CO₂ emissions tend to decrease, the crop C assimilation was also significantly reduced, which resulted in declining farmland C sinks under future climatic conditions.
- Higher temperature and increased precipitation enhanced soil inorganic N leaching and N₂O emissions but reduced NH₃ volatilization from 2025 to 2100. Overall, the soil total N loss was increased over time, whereas crop N uptake was significantly reduced.
- Reducing irrigation and increasing N fertilization can mitigate the negative effects of climate change on WCNBs to some extent, but these negative effects cannot be completely offset by adjusting irrigation and fertilization management. Developing crop varieties that are resistant to high temperatures and high CO₂ concentrations may be a potential way to address these negative impacts caused by future climate change.

References

Dutta, R., Chanda, K., Maity, R., 2022. Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis. Renewable Energy. 188, 819-829. IPCC, 2014. Climate Change 2014-mitigation of Climate Change: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge. Li, Y., Wang, R., Chen, Z., Xiong, Y., Huang, Q., Huang, G., 2023. Increasing net ecosystem carbon budget and mitigating global warming potential with improved irrigation and N fertilization management. Plant Soil. 489, 193-209. Xu, X., Sun, C., Neng, F., Fu, J., Huang, G., 2018. AHC: An integrated numerical model for simulating agroecosystem processes—Model description and application. Ecol. Model. 390, 23-39. Zydelis, R., Weihermuller, L., Herbst, M., 2021. Future climate change will accelerate maize phenological development and increase yield in the Nemoral climate. Sci. Total Environ. 784, 147175.

Fig. 3. Comparison between current strategy (yellow) and compensation strategy (green) under the SSP5-8.5 scenario. Compared with the current strategy, the compensation strategy reduced irrigation by 45%, increased N fertilization by 45%.