

A data-driven framework for assembling multiple geoscientific models

Hao Chen^{1,2}, Tiejun Wang¹, Carsten Montzka², Harry Vereecken²

¹Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University ²Institute of Bio- and Geosciences: Agrosphere (IBG-3), Forschungszentrum Jülich GmbH

> Bonn, Germany Sep 28, 2023

Outline

3

Background and methods

Case 1: Mapping global soil water retention parameters

Case 2: Improving remotely sensed cropland ET estimates

Case 3: Assembling multi-source daily precipitation products

Summary and outlook

Background

Increasing need for better theories, methods, and data sets

(Gettelman et al., 2022)

Essential

(EOV, GOOS)

Essential

Background

Complex environmental gradients

(Chen et al., 2023. In review)

Background No model exists with consistently low noise levels over time and space

⁽Chen et al., 2023. In review)

Background Efforts have been devoted to assembling multiple geoscientific models

- The superiority of using ensemble strategies over any of the single models
- Numerous ensemble methods have been proposed for various sub-fields of geosciences, for example,
 - Hydrometeorological variables: Soil moisture; Evapotranspiration; Streamflow (or runoff),
 - Physics-based CMIP5/6 models
 - Ensemble learning in data-driven science: bagging, boosting, stacking,
 - from simple methods such as arithmetic **MEAN** to more complicated ones such as weighted mean using the **BMA**, **EOF**,.....

- However, assigning fixed weights under all conditions to individual models that depend on just a subset of environmental constraints may not fully utilize the strength of ensemble approaches and/or individual models
- With increasing data availability for earth systems, machine learning (ML) techniques provide additional avenues for addressing this issue

(Opitz and Maclin, 1999; Fragoso et al., 2018; Zounemat-Kermani et al., 2021; Lu et al., 2022; Bai et al., 2021; Telteu et al., 2021; Zaherpour et al., 2019)

Background Automated machine learning (AutoML): An emerging area in ML

• However, the use of ML models is still faced with several challenges, such as feature engineering, model/optimization algorithm selection, and neural architecture design, making it time-consuming and error-prone if constructed manually (Tuggener *et al.*, 2019)

Methods Automated machine learning-assisted ensemble framework (AutoML-Ens)

 key strategy of mapping between the probabilities derived from the machine learning classifier and the dynamic weights assigned to the candidate ensemble members Case 1

The pedotransfer functions (PTF) concept

T, texture; BD, bulk density; C%, carbon; Str, structure

Soil hydraulic property processes: AWC, available volumetric water capacity; infiltration; evapotranspiration; drainage; run-off Case 1

Mapping global soil water retention parameters

National Cooperative Soil Survey

- 49,855 soil samples and a total of 118,599 water retention records
- measured at matric potentials of 0.06, -0.1, -0.33, -1, -2, or -15 bar

Model setting

- up to **13 selected PTFs** according to Zhang *et al.*, 2018, 2020
- predictors (volumetric fractions [%] of sand, silt, and clay, BD
 [g/cm3], OC [%], and matric potential [bar])

PTFs	Methods of PTFs	Source
Cosby0	Lookup table	Cosby et al. (1984)
Carsel & Parrish	Lookup table	Carsel and Parrish (1988)
Clapp & Hornberger	Lookup table	Clapp and Hornberger (1978)
Rosetta3-H1w	Lookup table	Zhang and Schaap (2017)
Cosby1	Regression equation	Cosby et al. (1984)
Cosby2	Regression equation	Cosby et al. (1984)
Rosetta3-H2w	Neural networks	Zhang and Schaap (2017)
Rawls & Brakensiek	Regression equation	Rawls and Brakensiek (1985)
Campbell & Shiozawa	Regression equation	Campbell and Shiozawa (1992)
Rosetta3-H3w	Neural networks	Zhang and Schaap (2017)
Wösten	Regression equation	Wösten et al. (1999)
Weynants	Regression equation	Weynants et al. (2009)
Vereecken	Regression equation	Vereecken et al. (1989)

(Zhang et al., 2020; Chen et al., 2023. GMD)

Case 1

Mapping global soil water retention parameters

- Compared to conventional ensemble approaches, AutoML-Ens was superior across the datasets (the training, testing, and overall datasets) and environmental gradients with improved performance metrics
- With the largest positive R² difference value of 0.075 (improved by 9% from 0.797 to 0.872) and the lowest negative RMSE difference value of -0.012 m3/m3 (reduced by 22% from 0.055 to 0.043 m³/m³) compared to the MEAN ensemble (considered as the benchmark)

11

(Chen et al., 2023. GMD)

Case 1

Mapping global soil water retention parameters

A set of global soil water retention parameters (with a resolution of 10 km) was produced at different soil depths (that is, 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm) using the SoilGrids soil composition database (Hengl *et al.*, 2014, 2017) as input for the newly proposed AutoML-Ens

https://doi.org/10.6084/m9.figshare.17098487.v1

Case 1

Necessity of assigning optimal dynamic weights in ensemble approaches

If the classification accuracy matters?

- If taking the mean per class error, which indicates misclassification of the data across the classes, as an indicator, it can be about
 77% in this example
- Poor accuracy may result from the uneven distribution of available data samples, their low representative ability, and intermodel similarities and dependencies (Holtanová et al., 2019).

Weight (-)									
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

Case 2

Improving remotely sensed cropland ET estimates

FLUXNET measurements in combination with remotely sensed surface parameters

• a total of 83,621 record (daily scale)

Six physically-driven remote sensing-based ET models.

Model name	Driving forces [*]	Reference
PT-JPL	VPD, T_{a} , R_{n} , NDVI, SAVI	Fisher et al. (2008); Vinukollu et al. (2011)
PT-DTsR	$T_{\rm a}, R_{\rm n}, {\rm DTsR}, {\rm NDVI}$	Yao et al. (2013)
STIC	$T_{\rm a}, {\rm VPD}, u, R_{\rm n}, T_R, {\rm NDVI}$	Mallick et al. (2014, 2015, 2016); Bhattarai et al. (2018)
SEBS	$T_{\rm a}$, VPD, u , $R_{\rm n}$, T_R , NDVI	Su (2002); Chen et al. (2013)
RS-WBPM	$T_{\rm a}$, VPD, u , $R_{\rm n}$, EVI, $P_{\rm d}$	Bai et al. (2017)
EVI-PM	$T_{\rm a}, { m VPD}, u, R_{\rm n}, { m EVI}$	Yebra et al. (2013); Bai et al. (2017)

Case 2

The advantage of an AutoML-based workflow

Case 2 Pure AutoML-based ensembles may appear largely inconsistent with known physics

A possible extension: Incorporating physical knowledge into machine learning

(Chen *et al.*, 2023. GMD)

For specific ensemble tasks, several challenging issues still exist, for example,

- Over- and/or under-estimation, e.g., smoothed ensemble
- Sample representation, e.g., extreme values
- Similarities among ensemble members, e.g., sharing the same data source, parameters, and assumptions

Case 3 Framework extension: Joint machine-learning based classification and regression

Case 3

Regression-based ensembles vs Classification-based ensembles

(Chen *et al.,* 2023. In Review)

Case 3

Still perform better over ungauged regions

Case 3

Cracking the Box: Interpreting black box machine learning models

(Chen *et al.*, 2023. In Review)

Summary and outlook

• AutoML-Ens' three unique features:

- ✓ assigning dynamic weights for candidate models
- ✓ taking full advantage of AutoML-assisted workflow
- ✓ flexible, extendable, modular and computationally efficient
- Similarities within a multi-model ensemble are responsible for poor classification accuracy but allowed
- Suggestion: combining data-driven approaches with physics constraints
- Next big step: explainable AI--From black box to transparency

For details

- ✓ Chen *et al.* (2023). *Geoscientific Model Development*. Dynamically weighted ensemble of geoscientific models via automated machine learning-based classification. (In Press)
- ✓ Chen et al. (2023). Atmospheric Research. Toward an improved ensemble of multi-source daily precipitation via joint machine learning classification and regression. (In Review)
- ✓ Or by email <u>hao chen@tju.edu.cn</u>; <u>ha.chen@fz-juelich.de</u>

How much rain will fall in Jülich tomorrow?

Guten Appetit!

Seecasino, Forschungszentrum Jülich

Models and ensembles

- Numerous ensemble methods have been proposed
 - e,g., Ensemble learning in data-driven science: bagging (Breiman 1996), boosting (Freund and Schapire 2005), stacking (Wolpert 1992)

A data-driven ensemble framework ----- A machine learning classifier

Binary Classification Multiclass Classification Dog Not Dog Cat Bus Plant Dog 0.9 0.5 0.09 0.01 0.1 0.4 (Source: Matlab)

Key strategy of mapping between the probabilities derived from the machine learning classifier and the dynamic weights assigned to the candidate ensemble members

Dynamic weights

 Weights assigned to candidate ensemble members vary depending on the spatial and temporal changes in environmental conditions and the performance capabilities of individual models under these conditions

Implementation

^{2007-2016 -} Wet Day (2) - 688,035 cases

Framework extension: Joint machine-learning based classification and regression

If the classification accuracy matters?

Environmental conditions -> models

Similarities within a multi-model ensemble are responsible for poor classification accuracy but allowed

Automated machine learning: An emerging area in ML

• However, the use of ML models is still faced with several challenges, such as feature engineering, model/optimization algorithm selection, and neural architecture design, making it time-consuming and error-prone if constructed manually (Tuggener *et al.*, 2019)

Thanks