

A MACHINE LEARNING FRAMEWORK TO DESIGN BASIN SPECIFIC DROUGHT INDEXES

Sami Miaari^{1,2} Advisor: Prof. Andrea Castelletti¹ Co-Advisors: Dr. Elena Matta¹ Co-Advisors: Dr. Matteo Sangiorgio¹

(1) Department of Electronics, Information, and Bio-Engineering, Politecnico di Milano, Milan, Italy;
(2) Institute of Bio-Geosciences (IBG-3, Agrosphere), Research Centre Jülich, Jülich, Germany.

28/09/2023

DROUGHTS

DEFINITIONS AND INDEXES

OBJECTIVE

CASE STUDY: THE NILE RIVER BASIN

• The basin climate varies from south to north

- Complex hydrology and different topographic areas
- Climate change and population growth
- Most of the Nile River water is allocated for agriculture
- Lack of efficient water management coordination among the basin countries
- Transboundary waters conflicts

CASE STUDY: THE NILE RIVER BASIN

Input variables used for the W-QEISS

Input features	Source	Spatial resolution	Temporal resolution	Time aggregation (weeks)	
Year	-	-	-	Not aggregated	
Week	-	-	-	Not aggregated	
Precipitation	CHIRPS	0.05°x0.05°	Daily	1,2,4	
Tmin				1,2	
Tmax	CHIRTS	0.05°x0.05°	Daily	1,2	
Tmean				1,2,4	
Evapotranspiration	ERA5	0.1°x0.1°	Hourly	1,3,6,16	
River discharge	GloFAS	0.1°x0.1°	Daily	1,2,4,16	
Soil moisture	MERRA-2	0.5°x0.625°	Hourly	1,16,52	
SPI	Precipitation based (CHIRPS)			1,3,6,16,52	
NDVI	NOAA STAR	4kmx4km	Weekly	Target variable	

Nile River major sub-basins (NBI, 2016)

TARGET VARIABLE: NDVI

- Able to
 - detect agricultural and meteorological droughts
 - o describe vegetation health conditions and stress level
- Highly dependent on land cover

TARGET VARIABLE: NDVI

- Able to
 - detect agricultural and meteorological droughts
 - o describe vegetation health conditions and stress level
- Highly dependent on land cover

The Nile River major sub-basins excluding water bodies and desert 9

Nile River Basin scale

RESULTS: THE NILE RIVER BASIN

Feature selection results for the Nile River Basin

Sub-basin scale

RESULTS: BLUE NILE

Observed and predicted NDVI values over Blue Nile with R_{Linear}^2 =0.928 and R_{ANN}^2 =0.9288

Feature selection results for the Blue Nile sub-basin

RESULTS: LAKE ALBERT

Feature selection results for the Lake Albert sub-basin

RESULTS: ALL SUB-BASINS

Selected subsets for the major sub-basins

Sub-basin	Year	Week	Precipitation	Tmin	Tmax	Tmean	Evapo- transpiration	River discharge	Soil moisture	SPI	SU
Bahr El Ghazal		Х	4w							16w	0.675
Bahr El Jebel		х								16w	0.627
Bako Akobbo- Sobat	х	Х	2w				1w		1w	6w,16w	0.606
Blue Nile		х						2w		16w	0.633
Lake Albert	Х	х					6w	4w			0.204
Lake Victoria	Х						6w	4w	52w		0.342
Main Nile			1w	1w,2 w		4w		1w,16w		3w,6w,1 6w	0.371
Tekeze Atbara		х	2w							3w,16w	0.495
Victoria Nile	Х	Х				4w	6w				0.248
White Nile	Х								1w	6w,16w	0.603

RESULTS: ALL SUB-BASINS

Selected subsets for the major sub-basins

Sub-basin	Year	Week	Precipitation	Tmin	Tmax	Tmean	Evapo- transpiration	River discharge	Soil moisture	SPI	SU
Bahr El Ghazal		Х	4w							16w	0.675
Bahr El Jebel		Х								16w	0.627
Bako Akobbo- Sobat	х	Х	2w				1w		1w	6w,16w	0.606
Blue Nile		Х						2w		16w	0.633
Lake Albert	Х	Х					6w	4w			0.204
Lake Victoria	Х						6w	4w	52w		0.342
Main Nile			1w	1w,2 w		4w		1w,16w		3w,6w,1 6w	0.371
Tekeze Atbara		Х	2w							3w,16w	0.495
Victoria Nile	Х	Х				4w	6w				0.248
White Nile	Х								1w	6w,16w	0.603

0%

70%

Regression models performance using the selected input variables compared with using all predictors

28/09/2023

CONCLUSIONS & OUTLOOK

- The designed drought index can well reproduce the target variable for most of the Nile subbasins
- Both ANN and linear model perform similarly with a preference for the **non-linear model**
- The efficiency of W-QEISS is confirmed by comparing the selected subsets with all feature
- The selected subsets identify the correlated variables for the considered study area
- A consistent basin subdivision based on specific criteria (e.g., climatic characteristics, land cover, and topography) is recommended
- Input variables' spatial resolution as an additional criteria for basin subdivision can ensure noise filtering
- FRIDA has demonstrated its transferability to complex case studies
- Introducing additional prediction variables such as groundwater table and air humidity may improve FRIDA's performance

Thanks for your attention

W-QEISS METHODOLOGY

28/09/2023

W-QEISS methodology (Zaniolo et al., 2018)

RESULTS: WHITE NILE

Feature selection results for the White Nile sub-basin

RESULTS: INPUT VARIABLES SELECTION

JÜLICH

Forschungszentrum

POLITECNICO MILANO 1863

NDVI FOR ALL SUB-BASINS

THE NILE RIVER BASIN SCATTERPLOTS

Scatterplots for NDVI observed and predicted using the ANN model

BLUE NILE SCATTERPLOTS

MAIN NILE SCATTERPLOTS

ANN model

LAKE ALBERT SCATTERPLOTS

linear model