

Electrical resistivity applications for supporting precision agriculture: a promising approach also for environmental monitoring?

Dr. Daniela Vanella (daniela.vanella@unict.it)

Università degli Studi di Catania (Italy)

26 September 2023, Bonn

About me:

International Conference 25-28 Sept 2023, Bonn

Daniela Vanella

Fixed-term Assistant Professor of Agricultural hydraulics and watershed protection [AGR/08]

Contacts

Office: Polo Bioscientifico - Stanza 24 - II piano, corpo B (Sez. Idraulica e Territorio) Email: daniela.vanella@unict.it Phone: (+39) 095 7147554 Web Site: orcid.org/0000-0003-1175-6754

Office Hours

Monday from 15:00 to 17:00 | Wednesday from 11:00 to 13:00 via MicrosoftOffice Team (codice yto8oqf), please send an e-mail to arrange an appointment in other time slots and/or days

https://orcid.org/0000-0003-1175-6754

https://www.di3a.unict.it/faculty/daniela.vanella

My research line is focused on the agricultural sustainable management of the soil and water resources, with a special emphasis to the identification of **minimally invasive** and **multi-scale approaches for monitoring** and **modelling** the transfer processes acting within the **soil-plantatmosphere continuum**.

Contents:

International Conference 25-28 Sept 2023, Bonn

- Basics of geophysical methods
- Electrical resistivity basic principles
- Electrical resistivity tomography (ERT) technique

- Case studies in Sicily (Italy):
 orange orchards under different sustainable water and soil
 management practices
- Case studies in California (USA):
 almond orchards treated with organic amendments

Purpose:

Show soil-plant-waterrelated applications of geophysics in agricultural contexts

Conclusive remarks

Basics of geophysical methods:

It is typical of geophysical methods to obtain **indirect information** about the **soil properties** from the analysis of one or more **variables** that characterize the **geophysical field** of interest.

This approach calls for carrying-out measurements using **sources** and **sensors** that are placed around the desired area or volume of interest.

The derived geophysical information are then modelled applying the mathematical formulation of the so-called inverse problems.

Main physical properties from geophysical methods:

- Geo-electrical surveys: electrical resistivity (or electrical conductivity)
- Electromagnetic induction methods: electrical conductivity
- Ground penetration radar: permittivity, electrical conductivity
- Self-potential methods: electrical conductivity, electrical sources
- Induced polarization: complex electrical conductivity, chargeability
- Seismic methods: elastic modules and density
- Magnetrometry methods: remnant magnetism or magnetic susceptibility
- Gravimetric methods: density

Main physical properties from geophysical methods:

- Geo-electrical surveys: <u>electrical resistivity</u> (or <u>electrical conductivity</u>)
- Electromagnetic induction methods: electrical conductivity
- Ground penetration radar: permittivity, electrical conductivity
- Self-potential methods: electrical conductivity, electrical sources
- Induced polarization: complex electrical conductivity, chargeability
- Seismic methods: elastic modules and density
- Magnetrometry methods: remnant magnetism or magnetic susceptibility
- Gravimetric methods: density

Hydrogeophysical applications

Hydrogeophysical techniques: spatial resolution and scale of application

Electrical resistivity basic principles:

Electrical resistivity (ER) methods permit to derive the soil spatial ER characteristics at low frequency.

These characteristics maily depend on:

- soil type,
- soil pore solution,
- water content

Electrical Transport = Flow + Storage

Electrical resistivity basic principles:

ER methods inject an electrical current (I) into the soil through current electrodes (C+ and C-) and the difference in current flow potential (ΔV) is measured at potential electrodes (P+ and P-) that are placed in the vicinity of the current flow (**Ohm's Law**).

Electrical resistivity tomography technique:

The development of multi-electrode equipment made possible to depict 2D and 3D sections of subsurface ER using the **electrical resistivity tomography** (ERT) technique.

In this way, different combinations of arrays are possible using the same sequence and varying the depth of investigation.

Electrical resistivity tomography technique:

Advantages:

- □ To relate the ER changes to different state conditions (including soil water content and salinity)
- □ To provide great lateral coverage and depth of investigation

Limitations:

- To be sensible to surface heterogeneities
- To loose resolution with depth

Contents:

International Conference 25-28 Sept 2023, Bonn

- Basics of geophysical methods
- Electrical resistivity basic principles
- Electrical resistivity tomography (ERT) technique

- Case studies in Sicily (Italy):
 orange orchards under different sustainable water and soil
 management practices
- Case studies in California (USA):
 almond orchards treated with organic amendments

Purpose:

Show <u>soil-plant-water-</u> related applications of geophysics in agricultural contexts

Conclusive remarks

Aims and materials and methods

- To characterize the soil-plant interactions under sustainable soil and water management practices (i.e., full and regulated deficit irrigation (FI and RDI) with/without mulching (BARE and MULCH);
- To combine the ERT technique together with continuous point-based soil water content (SWC) measurements.

ERT configuration applied for time-lapse acqusitions

Multiple ERT surveys were conducted on July and Sept., 2022. For each time-period, the ERT surveys were repeated in **time-lapse mode** within an irrigation cycle (before, during and at the end of the irrigation event).

Each ERT transect was displayed perpendicular to the tree lines, covering two trees. At least 1 emitter for tree was intercepted by each ERT transect.

Overview of the ERT layout and sensors locations at treatment level

log10 of ER (in Ohm m) 0.000e+00 7.4e-01 1.5e+00 2.2e+00 2.971e+00

7 ¥

emitters

000e+00 7.4e-01 1.5e+00 2.2e+00 2.971e+00

Seasonal ERT profiles (before irrigation, July versus Sept)

Shallow soil layer

(0-10 cm): more

Higher water retention

ER profiles tend to

overlap eachother

•Deeper soil layers

(-90 cm): more

conductive than the

upper soil layers.

More uniform ER conditions than RDI

O July

Temporal short-term ERT profiles: within the irrigation phase on July

More homogeneous ER conditions

Temporal short-term ERT profiles: within the irrigation phase on September

Higher ER anomalies

Temporal SWC evolution during ERT surveys

- At 30 cm depth, the SWC varied in a narrow range of values showing a largely constant trend both on July and September for all treatments;
- The RDI treatments were more affected by the irrigation inputs as can be seen from the marked SWC fluctuations occurring in correspondence of the irrigation events (clear blue rectangles).

SWC during the short-term ERT monitoring during the irrigation phase

Aims and materials and methods

- 2 treatments supplied by RDI strategies both under bare and/or organic mulched soil conditions;
- To explore the soil-water-plant relationships by coupling the time-lapse ERT-based information with point-based measurements referring both to the soil and tree water status.

Overview of the ERT layout and sensors locations at treatment level

FloraPulse© sensor

Sap flow probes

Absolute ERT inversions: August, 2023 (before irrigation)

Homogenoeus

the transect

Temporal short-term ERT profiles: within the irrigation phase

Mulched soils recover faster their status both in terms of trunk water potential and soil water status

Aims and materials and methods

Time-lapse ERT surveys were conducted in an almond orchard characterized by 2 treatments (i.e., a control and an amended treatment, respectively). A total n. of 9 ERT dataset were acquired before (n. 1) and during (n. 8) an irrigation event at both treatments

Westwind site in California (USA)

Absolute ERT inversions: bare versus amended soils (initial conditions)

Temporal short-term ERT profiles: within the irrigation phase

ER ratio (%)

Temporal short-term ERT profiles: within the irrigation phase

Tree water status during ERT surveys

More negative trunk water potential values at the amended treatments

Higher RWU?

Conclusive remarks:

- The use of geo-electrical imaging offers great tools for inferring the main environmental key parameters, such as the temporal soil water features in the root-zone of tree crops;
- The combination of time-lapse ERT monitoring together with soil and tree water status measurements helps to gain a better understanding of the soil hydrologic processes (i.e., the infiltration and RWU processes) for a more precise management of the orchards;
- These understanding are pivotal for determining the environmental effects related to the adoption of precision agriculture criteria.

from 25 - 28 September 2023, Bonn

Thank you for the attention

Dr. Daniela Vanella (daniela.vanella@unict.it)

Università degli Studi di Catania (Italy)

26 September 2023, Bonn