

ACCURACY OF ROOT-ZONE SOIL MOISTURE ESTIMATES FROM GAMMA RADIATION MONITORING DATA

SONIA AKTER, JOHAN ALEXANDER HUISMAN AND HEYE REEMT BOGENA

Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

Member of the Helmholtz Association

Gamma radiation as a proxy of soil moisture

- The terrestrial component of the gamma radiation provides information on soil moisture in the root zone
- Gamma radiation is more attenuated in wet soil compared to the dry soil

EURDEP gamma radiation monitoring network
Source: https://essd.copernicus.org/articles/12/109/2020/

- Possibility to obtain Europe-wide soil moisture
- Lack of information on the radiation energies of the radionuclides present in the soil
- Additional sources of uncertainty may affect the measurement accuracy

Objective of this study

Assess accuracy of soil moisture derived from standard gamma radiation monitoring detectors

Footprint and Sensing depth

• Straight-ray propagation model assuming mono-energetic attenuation

$$dI = \frac{A\varepsilon}{4\pi R^2} \exp{-(\mu_e r_e + \mu_a r_a)} dV$$

• Radial footprint: 5–10 m, independent of soil properties (0.1–3 MeV)

50

0.01 MeV

0.1 MeV

0.3 MeV

0.6 MeV

1.46 MeV

3.0 MeV

40

Experimental setup of the pilot study

Gamma radiation detectors

SoilNet reference stations:

Eight soil moisture sensors per site distributed in the

footprint

- Long-term monitoring data of gamma radiation at two sites available
- Reference in-situ soil moisture and meteorological data

Gamma radiation correction

- Atmospheric radon progenies washed out by precipitation are responsible for short-term increases in gamma radiation
- Using a filter, these GR peaks can be removed:

Extracting terrestrial radiation component

• The measured gamma radiation (R) is composed of:

$$R = R_{TGR} + R_{SCR} + R_{AR}$$

Terrestrial
gamma
radiation
$$\begin{array}{l} \text{Secondary}\\ \text{cosmic}\\ \text{radiation} \end{array} \quad \begin{array}{l} \text{Artificial}\\ \text{radiation} \end{array}$$

$$\begin{array}{l} \text{Artificial}\\ \text{radiation} \end{array}$$

$$\begin{array}{l} \text{Radionuclides}\\ \text{present in soil} \end{array} \quad \begin{array}{l} \text{Generated from}\\ \text{cosmic rays} \end{array} \quad \begin{array}{l} \text{e.g. Nuclear}\\ \text{tests and}\\ \text{accidents} \end{array}$$

• Simplified equation:

 $R_{TGR} = R - R'_{SCR}$

- Long-term average fraction of SCR is assumed to be 50 %
- Correction for short-term variations due to air pressure and incoming neutron intensity

Extraction of the terrestrial component

Conversion of TGR intensity to soil moisture

• Normalized TGR as a function of the vol. water content:

 α : Ratio of TGR mass attenuation coefficients for water and solid phases

• For homogenous sources and energies >0.4 MeV

Calibration results:

Accuracy of soil moisture predictions

- The seasonal variation of soil moisture was reasonably well predicted
- Uncertainty in weekly soil moisture estimates ranges from 7 to 9 vol.%

Conclusions from the pilot study

- Weekly soil moisture estimation from GR monitoring is feasible Submitted in Vadose Zone Journal
- Possible sources of error:
 - Observed GR mainly originated at low energy associated with more noise
 - Variable influence of cosmic radiation
 - Unconsidered influences, e.g. radon emissions from the soil

 \rightarrow More investigations are needed to understand those confounding factors

Next step

• Using additional measurements and experiments to enhance data processing:

Ongoing measurements: SARA and MIRA sensors

- Improve the interpretation of the integrated gamma radiation measurements by combining measurements at different sites:
 - Agricultural test site Selhausen
 - Grassland test site Rollesbroich
 - Forest test site Wüstebach

TERENO/ICOS site Selhausen

TERENO

First results: Soil moisture from Potassium-40 radiation

• Higher accuracy of soil moisture prediction from gamma radiation originating at a specific single energy compared to bulk gamma radiation measurements

Thanks for your attention

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1502/1–2022 - Projektnummer: 450058266

Member of the Helmholtz Association

Additional information

Member of the Helmholtz Association

EURDEP map

The EURDEP network of gamma radiation intensity monitoring (https://remap.jrc.ec.europa.eu/Advanced.aspx accessed on 13.04.2023 04:00 UTC).

Model for gamma radiation measurements

$$dI = \frac{AE}{4\pi R^2} \exp(-(\mu_e r_e + \mu_a r_a))dV$$

- Model assumes straight-ray propagation and mono-energetic attenuation.
- Equation can be integrated over different geometries to obtain estimates of:
 - Sensing depth
 - Measurement footprint
 - Relationship between gamma radiation and volumetric water content

Gamma-ray attenuation

• Attenuation coefficients strongly depend on the gamma radiation energy

Energy	μ _{mw}	μ _{ms}	μ _{ma}
100 keV	0.168	0.171	0.151
1.46 MeV	0.058	0.053	0.053

Removing contribution of cosmic radiation

$$\begin{aligned} R'_{SCR} &= (R_{\mu,mean} - 0.051 \, (P - P_{ref})(1 + 0.52 \times \Delta N_m)) + \\ (R_{n,mean} - 0.076 \, (P - P_{ref})(1 + \Delta N_m)) \end{aligned}$$

 R'_{SCR} :corrected secondary cosmic radiation (SCR) contribution $R_{\mu,mean}$:32.7 nSv h⁻¹ is the average muon intensity at sea level $R_{n,mean}$:8 nSv h⁻¹ is the average neutron intensity at sea level P_{ref} :1013.25 is the standard atmosphere pressure at sea levelP:atmospheric pressure at the test site

 ΔN_m : relative deviation of incoming neutron count from the average