

Water dynamics in dry soils

Using relative humidity sensors to measure water vapor adsorption in desert soils

Nurit Agam & Dilia Kool

How it all started

Nurit Agam & Dilia Kool – Water dynamics in dry soils

What is the source?

Non-rainfall water inputs

Adsorption: e_{surface} < e_{air}

Water vapor adsorption: most common

least considered

Are we missing something?

Long-term water cycle variables changes for SSP2-4.5 (2081-2100 vs 1995-2014) (a) Precipitation (b) Evapotranspiration IN ΠΠ 38 37 % % (c) Runoff (d) Surface soil moisture OUT NET 32 27 -40 -30 -20 -10 -5 10 20 30 40 -10 -2 0 2 4 6 8 10 0 % % High model agreement (≥80%) Color *Box TS.5; TS.6; IPPC 6th assessment report* Low model agreement (<80%)

Deserts: ~26% of terrestrial surface High uncertainty

Is water vapor adsorption unique to the Negev desert?

NEED MEASUREMENT METHOD THAT WILL ALLOW EXPLORING

The challenges

1. Typically used sensors for soil water content cannot detect these small changes

2. Micro-lysimeters are difficult to apply everywhere

The solution

Use relative humidity sensors in the soil

Why? Soil is dry enough

How?

1. Convert soil relative humidity (RH_s) to soil water potential (ψ)

 $\psi = c T_{s} \ln(RH_{s})$ Kelvin equation (c- constant; T_s – soil temperature)

2. Convert soil water potential (ψ) to gravimetric water content (θ_q)

 $\theta_g = a \ln(\psi) + b$ (a, b – soil-specific parameters)

Tested for two different soils

	Water retention regression parameters		
	а	b	r ²
	ln(MPa)	% ln(MPa)-1	(-)
Loess	0.56	3.92	0.99
Sand	0.10	0.99	0.98

	Bulk density	
	g cm ⁻³	
Loess	1.45	
Sand	1.60	

Compared to micro-lysimeters

Compared to micro-lysimeters

Trends are good but! Significant underestimation Why?

Inability to place sensor at the surface

Loess better than sand

Why?

A smaller amount of water vapor adsorption resulting in higher sensitivity to errors in both methods.

And yet... water contents can be monitored!

Is this unique to the Negev desert?

The Namib Sand Sea, Namibia

The Sahara, Morocco

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Research papers

The overlooked non-rainfall water input sibling of fog and dew: Daily water vapor adsorption on a !Nara hummock in the Namib Sand Sea

D. Kool^a, E. Agra^b, A. Drabkin^c, A. Duncan^d, P.P. Fendinat^e, S. Leduc^b, G. Lupovitch^b, A. N. Nambwandja^{e,f}, N.S. Ndilenga^f, T. Nguyễn Thị^a, B. Poodiack^g, L. Sagi^b, Y. Shmuelⁱ, G. Maggs-Kölling^f, E. Marais^f, B. Pinshow^b, J.S. Turner^j, N. Agam^{a,*}

IOP1, 14-15 February IOP2, 18-20 February 0.25 100 Crumulative water absorption (mm) 0.10 0.05 0.05 (a) (b) (%) 80 humidity 60 Co Relative I 0.00 18:00 18:00 12:00 12:00 0:00 6:00 12:00 0:00 6:00 18:00 0:00 6:00 12:00 - ← - IOP2 thicket in IOP2 thicket out ······ RH_a

What's next?

Towards a global assessment of non-rainfall water input dynamics in deserts

What's next?

Towards a global assessment of non-rainfall water input dynamics in deserts

Nurit Agam & Dilia Kool – Water dynamics in dry soils