

Optimal Temporal Filtering of the Cosmic-Ray Neutron Signal to Reduce Soil Moisture Uncertainty

Patrick Davies ¹, Roland Baatz², Heye R. Bogena³, Emmanuel Quansah¹ and Leonard K. Amekudzi¹

¹ Department of Meteorology and Climate Science, KNUST, Kumasi-Ghana;

² Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Muncheberg, Germany;

³ Forschungszentrum Juelich GmbH, 52425 Juelich, Germany;

X www.knust.edu.gh

Introduction

- Soil moisture accounts for an estimated 0.001% of earth's volume of water, yet plays a key role in the hydrological cycle (McColl et al. 2017).
 - rainfall into infiltration and runoff.

- Incoming cosmic ray radiation produces fast neutrons that can penetrate the soil and scatter back into the air (eventually hit the CRNS)
- Hydrogen strongly slows these neutrons down, thus:

Fewer detected neutrons = higher soil moisture

Why filter neutron counts?

• Additional hydrogen sources must be accounted for, especially if their contributions change significantly over time to reduce error.

- Uncertainty of the CRNS-derived soil moisture strongly depends on the CRNS count rate subject to Poisson distribution.
- Although averaging neutron count reduce uncertainty by removing spikes, the optimal approach is important. Especially retaining sub-daily scale events such as:
 - Rainfall
 - Irrigation

Fig. 2: Farm irrigation adopted from MacBean and Peylin, 2014.

Study sites

Key variable:

- Soil moisture (0-5 cm)
- Temperature
- Relative humidity
- Surface pressure
- Incoming neutron intensity (ref)

Table 1:	Summary	of the	site	characteristics

Site name	Bulk Density	Cut-off Rigidity	Other site information	
SMEAR II	0.85	1.11	Homogenous Scots pine trees. Silty sand.	
Gorigo	1.54	14.68	Highly degraded grassland. Loamy sand soil	
Rollesbroich	1.09	3.27	Managed Grassland. Silty clay loam	
Conde	1.37	8.33	Evergreen trees and shrubs. Clayey loam.	

Analysis

Gorigo (b), Rollesbroich (c) and Conde (d).

Results: Evaluation of filter performance

Fig. 6: Performance of MA, MF and SG filter with different window sizes.

- Performance of MA, MF and SG filters improved with increasing window size.
- MA and MF filters converge quickly compared to the Savitzky-Golay filters.

Fig. 7: Performance of MA, MF and SG filter with different window sizes.

Results: Optimal window size and filter

Fig .8: Time series of reconstructed neutron counts by various filters at SMEAR II (a), Gorigo (b), Rollesbroich (c) and Conde (d).

• Overall, the seasonal pattern was captured by the filtered synthetic neutron count.

Fig. 9: Time series of reconstructed neutron counts by various filters at SMEAR II (a), Gorigo (b), Rollesbroich (c) and Conde (d).

Smaller window size captured sharp changes well

Results: Optimal window size and filter

Fig. 10: Performance of filters at SMEAR II (a), Gorigo (b), Rollesbroich (c) and Conde (d).

• KF showed robustness in reducing uncertainty at three sites.

• Uncertainty from correction parameters are also propagated to soil moisture.

Filter (window size)	Scenario A (cm ³ /cm ³)	Scenario B (cm ³ /cm ³)
KF	0.006	0.008
MA (30 hr)	0.006	0.009
MA (24 hr)	0.007	0.009
MF (36 hr)	0.007	0.009
SG3 (78 hr)	0.007	0.009
SG4 (84 hr)	0.007	0.008

Ż

www.knust.edu.gh

Conclusion and Recommendation

• All filters showed significant reduction in the uncertainty add to the synthetic neutron counts. A robust performance was shown by the Kalman filtering technique.

- Short and long window size of filters are able to capture closely relevant short and long-term changes respectively (MA, SG and MF).
 - \circ The application of soil moisture data should inform window size

• Also, applying filter after standard atmospheric correction improved the CRNS-estimated soil moisture.

THANK YOU

SCAN ME !

