

Assessing the impact of irrigation on water storage dynamics in a Mediterranean catchment using land surface modelling

Olga Dombrowski, Cosimo Brogi, Harrie-jan Hendricks Franssen, Vassilios Pisinaras, Andreas Panagopoulos, Anna Chatzi, Konstantinos Babakos, Sean Swenson, Heye Bogena

THE CASE STUDY: Pinios Hydrological Observatory

PHO

- Mediterranean climate
- Tmean 15 °C
- P 500-1200 mm
- ETpot 1100 mm
- Highly productive agricultural area
- >85 % of groundwater abstraction for irrigation

Two highly instrumented irrigated apple orchards

THE MODEL: Community Land Model v. 5

- Land component of Community Earth System Model (CESM)
- Fully distributed physically based model
 - ✓ Surface energy fluxes
 - ✓ Hydrology
 - ✓ Biogeochemical fluxes

Sub-grid heterogeneity different plant functional types

Human management

CLM5-FruitTree sub-model

(Dombrowski et al. 2021)

Mitglied der Helmholtz-Gemeinschaft

IRRIGATION IN CLM5

- Irrigation responds dynamically to soil moisture (θ)
- Soil moisture threshold to trigger irrigation (θ_{thresh})
- Daily calculation of irrigation deficit ($D_{irrig} = \theta_{target} \theta_{avail}$)

STUDY DESIGN

Types of model simulations performed

→ Model calibration and validation
→ Field scale irrigation and soil moisture dynamics

 → Regional irrigation and soil moisture dynamics
→ Irrigation scenarios

PILOT FIELDS AND INSTRUMENTATION

Instrumentation

Hydrometer

CRNS

Atmos41

Camera

Irrigation Sector

Page 6

(%)

SOIL MOISTURE DYNAMICS

S09

Good model performance r ~0.85 RMSE ~3.4 vol%

Differences in "dry out" spring period

Low simulated dynamics at 0.5 m

SOIL MOISTURE DYNAMICS

Wet bias in model

8.35 vol% higher than observation

REGIONAL CASE – MODEL INPUT DATA

🛨 CS1-3

-1500

1000

- 500

Climate station data

☆S09/S10 2020-2022

2016-2022

Landuse

Irrigated apples Irrigated cherries Unirrigated crops Mixed forest Shrubs Grassland Bare soil Urban

PHO soil sampling 116 locations

LUCAS topsoil map 500x500 m

European Soil Database 1000x1000 m Soil maps

PHO

Mitglied der Helmholtz-Gemeinschaft

SPATIAL DYNAMICS & IRRIGATION SIGNATURE

0 300 350	250 300 350	0.1	0.15 0.20	0.15 0.20 0.25	0.15 0.20 0.25 0.30

Irrigation sums [mm]

Evapotranspiration sums [mm]

PHO

Forschungszentrum

IRRIGATION DEFICIT SCENARIOS (DI)

Irrigation

-0.025 0.00 [cm³ cm⁻³]

little effect on yield

PHO

50 % less irrigation DI50-FULL

[mm]

ET

Mitglied der Helmholtz-Gemeinschaft

Page 11

up to 30% yield decline

CONCLUDING REMARKS

S09 S10

- CLM5 could capture observed soil moisture using the implemented irrigation stream
- Some model biases exist in representation of soil hydraulic properties

- Irrigation changes regional soil moisture pattern and evapotranspiration
- Considerable amount of water could be saved using deficit irrigation

Modelling results can...

- Inform interaction between irrigation practices and freshwater resources
- Assess policy impacts and their dependency on future climatic scenarios

