Do we know our soil's water cycle well?

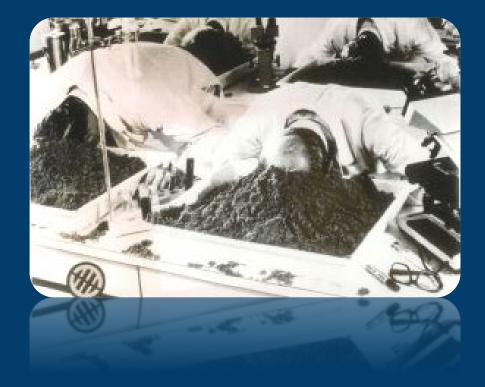
J. Groh^{1,2,3}, H.H. Gerke³, J. Cuxart⁴, D. Martínez Villagrasa⁴, V. Filipovic^{5,6}, V. Krevh⁶, R. Gründling⁷, H. Rupp⁷, H.J. Vogel⁷, J. Vanderborght², H. Vereecken², T. Pütz²

¹University of Bonn (INRES), ²Forschungszentrum Jülich (Agrosphere - IBG-3), ³Leibniz Centre for Agricultural Landscape Research (ZALF), ⁴University of Balearic Islands, ⁵Federation University Gippsland, ⁶University of Zagreb, ⁷Helmholtz-Centre for Environmental Research (UFZ)

International Conference 25-28 Sept 2023, Bonn

za

Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.



HELMHOLTZ CENTRE FOR ENVIRONMENTAL **RESEARCH – UFZ**

It is really difficult to track directly changes of water fluxes in soilplant ecosystems

..but we can use different methods to study water dynamics across the land surface and in the soil

Today I invite you to a walk through the soil water cycle

2023-09-26

Soil water cycle and it's components $P + I - ET - Dr = \Delta S$ **Precipitation (P)** Irrigation (I) **Evapotranspiration (ET)** Change in soil water storage (ΔS) Drainage (Dr)

3

How can we measure the single soil water balance components?

Precipitation (P) Irrigation (I)

- Catching gauge types
 - Tipping bucket
 - Weighing gauge
- Non-catching gauge type
 - Acoustic sensor
 - Laser based sense
- Weighable lysimeter

.... simple but fundamental important question remains: is this water balance equation complete?

Evapotranspiration (ET)

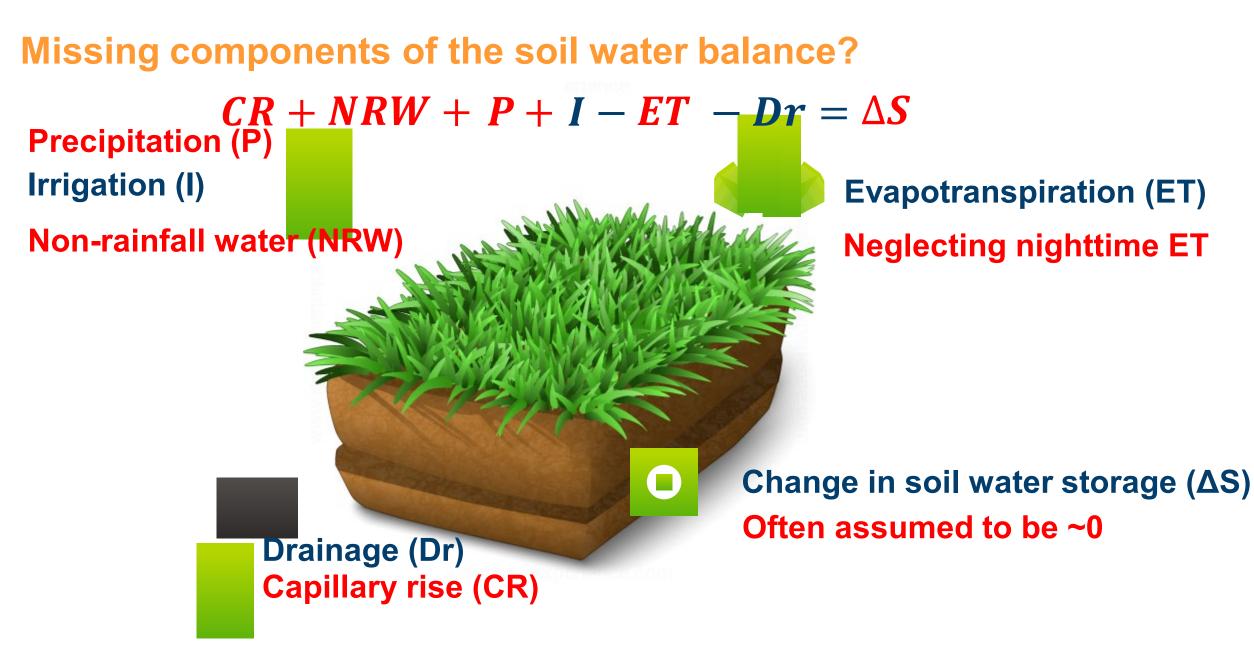
Sap-flow Evaporation pan Eddy-covariance Scintillometry Bown-ratio energy balance

Weighable lysimeter

0

 $P + I - ET - Dr = \Delta S$

Jala alla


Drainage (Dr)

- Water balance approach
- Groundwater level measurements
- Weighable lysimeter

2023-09-26

Change in soil water storage (ΔS)

- Water balance approach
- Soil moisture sensor
- Gravimeter
- Weighable lysimeter

5

What can you use to measure this?

Non-rainfall water

- Catching gauge types

 Tipping bucket
 Weighing gauge

 Mon-catching gauge types
 - Acoustic sensor
 - Laser based sensor
- Weighable lysimeter

... weighable lysimeter

a sul hard a stall a ship

 \square

Evapotranspiration (ET)

Neglecting nighttime ET

Sap-flow Evaporation pan Eddy-covariance? Scintillometry? Bown-ratio energy balance

Weighable lysimeter

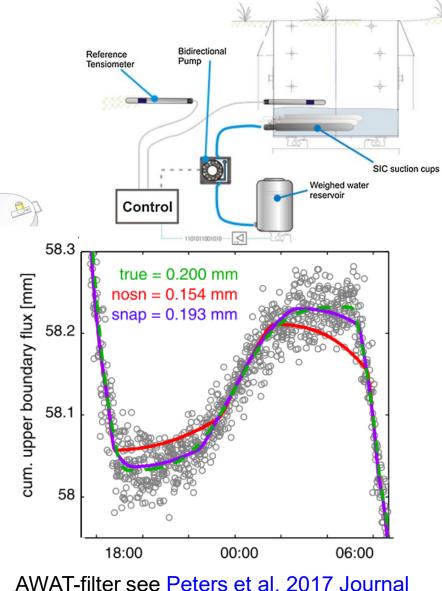
Change in soil water storage (ΔS)

Often assumed to be ~0

- Water balance approach
- <u>Soil moisture sensor</u>
- <u>Gravimeter</u>
- Weighable lysimeter

Images and icons provided by shutterstock.com

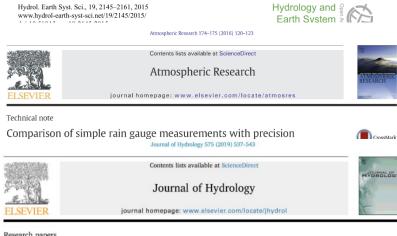
Drainage (Dr) Capillary rise (CR)


- Water balance approach
- Groundwater level measurements
- <u>Weighable lysimeter</u>

High precision lysimeter

✓ High precision and temporal resolution
 ✓ Development of new filter routine
 ✓ Dynamic control bottom boundary

More details on the project TERENO-SoilCan and data see Pütz et al. 2016 ESS, and www.tereno.net 2023-09-26


of Hydrology

-

PRECIPITATION

Some previous comparison studies

Research papers

Evaluation of precipitation measurements methods under field conditions during a summer season: A comparison of the standard rain gauge with a Check for updates weighable lysimeter and a piezoelectric precipitation sensor

Lisa Haselow^{a,*}, Ralph Meissner^b, Holger Rupp^b, Konrad Miegel⁶

E Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120 Halle, Germany Department of Soil System Science, Helmholtz Centre for Environmental Research – UFZ, Falkenberg 55, 39615 Altmärkische Wische, German

ABSTRACT

Tipping bucket until 35% less precipitation

ARTICLE INFO

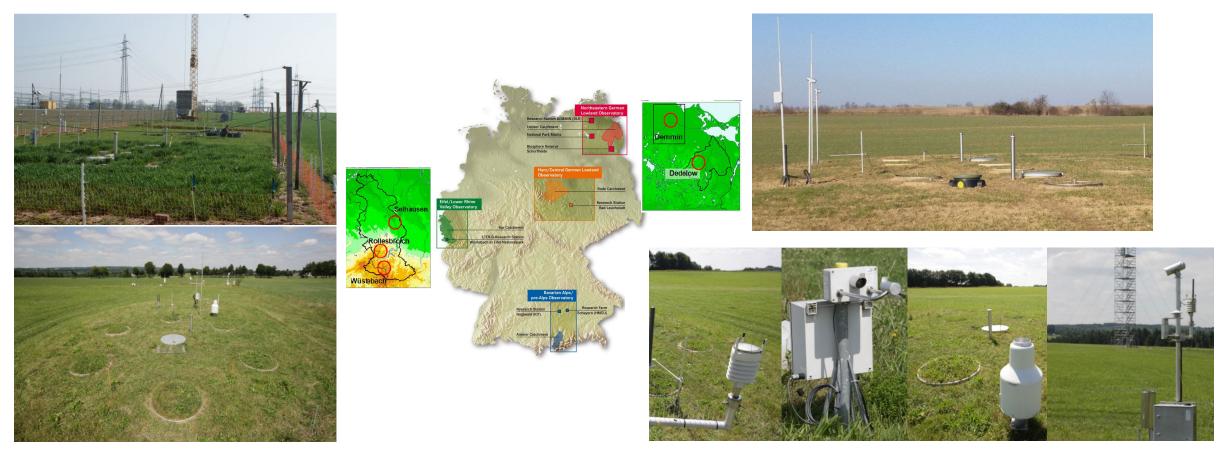
This manuscript was handled by Emmanouil Anagnostou, Editor-in-Chief

Current precipitation measurements are conducted largely by simple automatic rain gauges. Despite being error prone and sometimes of questionable accuracy, the procedure is still widely used. In recent years new possi-

Missing multi-comparison?

Hydrol. Earth Syst. Sci., 27, 3265-3292, 2023 https://doi.org/10.5194/hess-27-3265-2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License. \odot

Evaluation of precipitation measurement methods using data from a precision lysimeter network


Tobias Schnepper^{1,2,3}, Jannis Groh^{1,4,5}, Horst H. Gerke⁴, Barbara Reichert², and Thomas Pütz¹

¹Institute of Bio- and Geoscience IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany ²Institute for Geosciences, University of Bonn, Nussallee 8, 53113 Bonn, Germany ³GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany ⁴Research Area 1 "Landscape Functioning", Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany ⁵Institute of Crop Science and Resource Conservation – Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53113 Bonn, Germany

PRECIPITATION

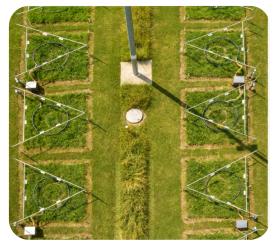
TERENO-SOILCan

Schnepper et al. 2023, Hydrol. Earth Syst. Sci. ,doi: 10.5194/hess-27-3265-2023

PRECIPITATION

Acoustic

Disdrometer


Site	Year	n	P _{ref}	Plys_crop	CR _{lys_crop}	P _{TB1}	CR _{TB1}	P _{TB2}	CR _{TB2}	P _{WG}	CR _{WG}	PAS	CRAS	PLD	CRLD
	[-]	[h]	[mm]			[mm]	[%]	[mm]	[%]	[mm]	[%]	[mm]	[%]	[mm]	[%]
	2015	793	709			334	47.1	594	83.8	606	85.5	499	70.4	676	95.3
Rollesbroich	2016	989	801			184	22.9	634	79.2	659	82.2	526	65.6	687	85.7
Rollespiolell	2017	1007	881			273	30.9	732	83.1	744	84.5	553	62.8	795	90.2
	2018	694	583			189	32.4	471	80.8	519	89.0	456	78.2	522	89.6
	2015	736	599	600	100.1	244	40.7			549	91.7	423	70.6	589	98.4
Selhausen	2016	697	554	556	100.3	221	39.9			495	89.4	388	70.0	455	82.1
Semausen	2017	581	431	430	99.8	169	39.2			398	92.3	303	70.2	317	73.6
	2018	548	388	394	101.4	79	20.4			367	94.5	319	82.1	373	96.1
	2015	571	414			344	83.1					373	90.1		
Dedelow	2016	641	423			322	76.1					351	83.1		
Dedelow	2017	719	693			504	72.8					572	82.6		.5
	2018	407	279			235	84.0					255	91.3		

²⁰²³⁻⁰⁹⁻²⁶ Partially large underestimation of precipitation!

NON-RAINFALL WATER

How much water does NRW inputs contribute at the annual scale to ecosystem and are those of ecological relevance?

Location: Gumpenstein, Austria

Location: Rollesbroich, Germany

ſ			Р			NRW		NRW% of P				
	Year	RO Se		GS	RO Se		GS	RO	Se	GS		
		r	nm y-´	1	mm y ⁻¹			mm y ⁻¹				
	2015	1092	700	1019								
	2016	1039	669	1161				`				
	2017	1076	602	1306	ר י			ר				
	2018	990	485	1013				•				
ſ	Mean	1020	614	1125								

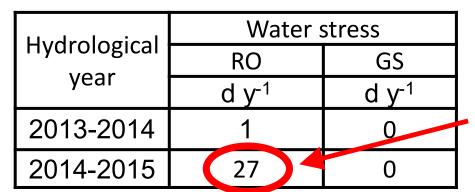
Forstner et al. 2021, Hydrol. Earth Syst. Sci. ,doi: 10.5194/hess-2021-100


Hydrological	Water stress						
Hydrological	RO	GS					
year	d y-1	d y-1					
2013-2014	С	C					
2014-2015	•	ľ					

2023-09-26 **Groh et al. 2018**, Journal of Hydrology, doi: 10.1016/j.jhydrol.2018.06.009

NON-RAINFALL WATER

How much does NRW contribute to the water and are those of ecological relevance?


Location: Gumpenstein, Austria

Location: Rollesbroich, Germany

		Р			NRW		NRW% of P		
Year	RO	Se	GS	RO	Se	GS	RO	Se	GS
	r	nm y-́	1	1	mm y⁻	1	mm y ⁻¹		
2015	1092	700	1019	57	49	51	5.2	6.9	5.0
2016	1039	669	1161	64	44	74	6.1	6.6	6.4
2017	1076	602	1306	57	47	73	5.3	78	5.6
2018	990	485	1013	45	38	60	5.2	7.9	5.9
Mean	1020	614	1125	56	44	65	5.5	7,2	5.7

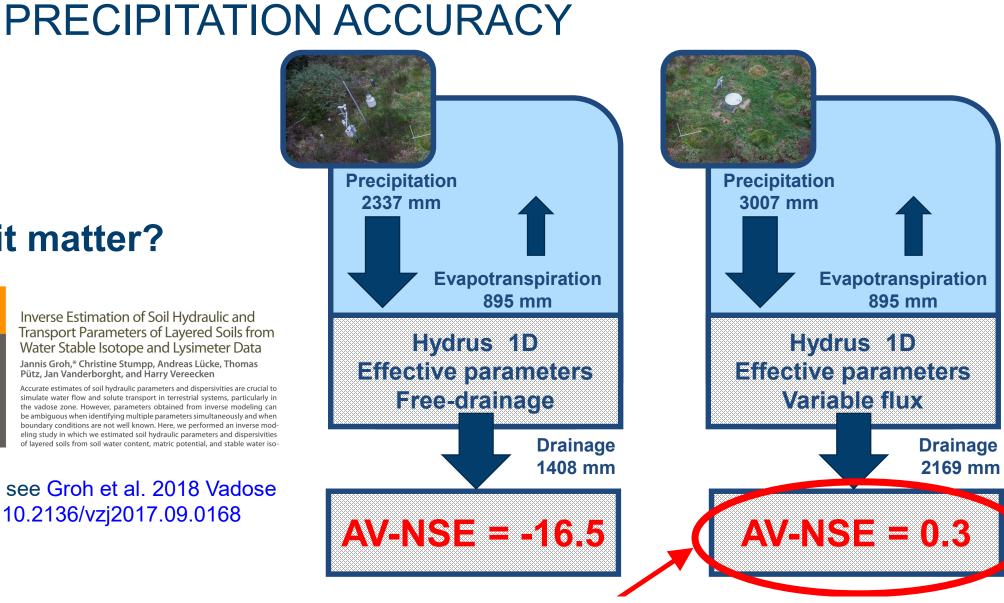
Forstner et al. 2021, Hydrol. Earth Syst. Sci.,doi: 10.5194/hess-202 -100

Importance of NRW in dry years and during dry periods

Does it matter?

Special Section: Stable Isotope Approaches in Vadose Zone

Core Ideas


 To determine the water retention curve from inverse modeling, θ and ↓ need t<u>o be monitore</u> δ^{18} O ratios contained info to inversely estimate soil hydra be combined in a single OF to est ould be described using effectiv

Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data

Jannis Groh,* Christine Stumpp, Andreas Lücke, Thomas Pütz, Jan Vanderborght, and Harry Vereecken

Accurate estimates of soil hydraulic parameters and dispersivities are crucial to simulate water flow and solute transport in terrestrial systems, particularly in the vadose zone. However, parameters obtained from inverse modeling can be ambiguous when identifying multiple parameters simultaneously and when boundary conditions are not well known. Here, we performed an inverse modeling study in which we estimated soil hydraulic parameters and dispersivities of layered soils from soil water content, matric potential, and stable water iso

More details see Groh et al. 2018 Vadose Zone J., doi:10.2136/vzj2017.09.0168

Importance of precipitation accuracy and NRW for inverse estimation of soil hydraulic and transport parameters

EVAPOTRANSPIRATION (DAYTIME)

Location: Selhausen, Germany

Elora, Canada

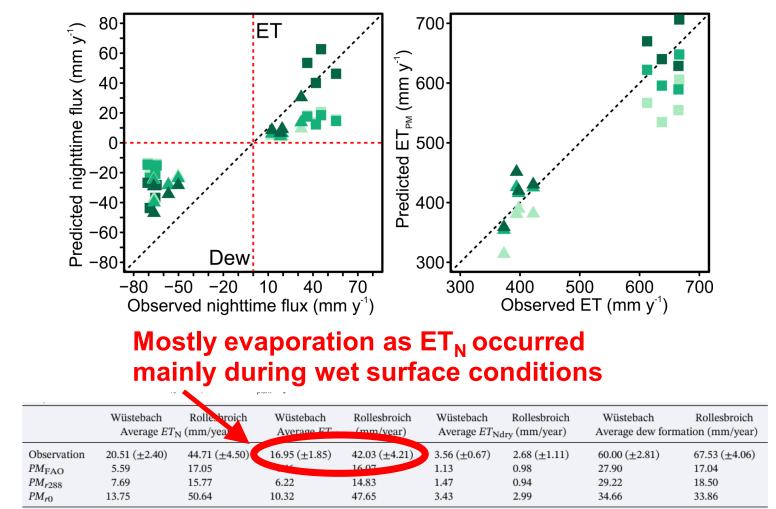
Els Plans, Spain

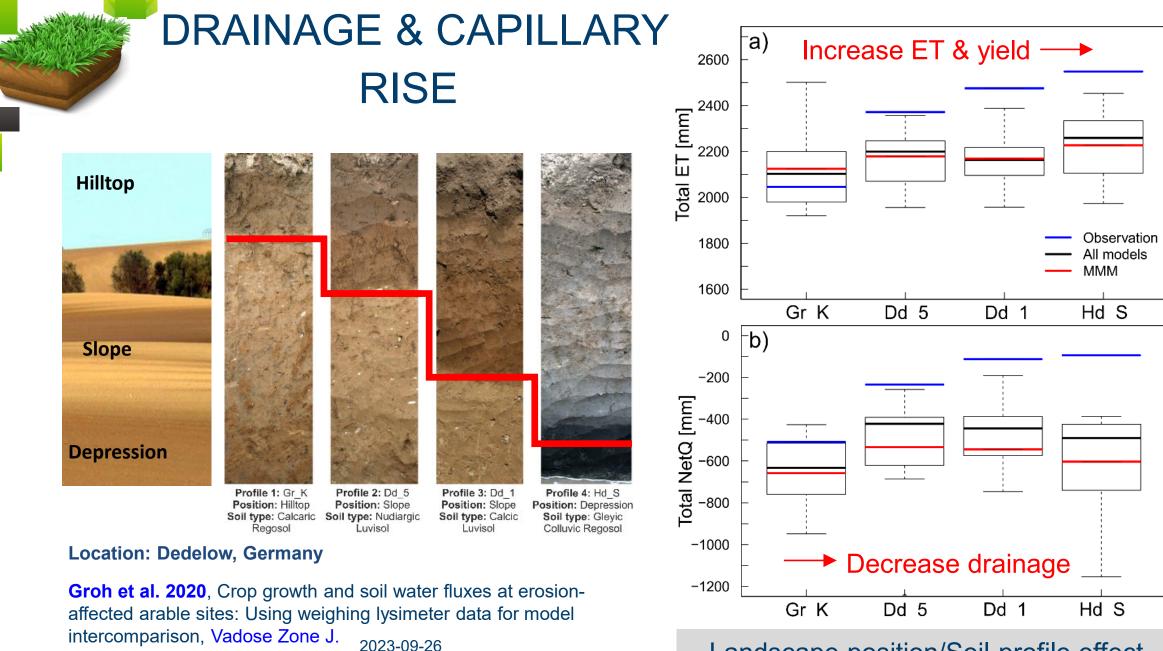
Majadas, Spain

Sites	Rollesbroich (mm/d)			lora m/d)		adas n/d)	Els Plans (mm/d)	
	clear cloudy		clear	cloudy	clear	cloudy	clear	cloudy
2017	1.27	0.29	-	-	-	-	-	-
2018	0.69	0.24	1.75	1.34	0.41	1.58	-	-
2019	1.44	0.54	0.68	0.37	0.55	0.65	-	-
2020	1.12	0.50	-0.26	0.23	0.65	1.20	-	-
2021	1.81	0.77	-0.16	-0.18	-	-	0.50#	0.27#
mean	1.26	0.47	0.50	0.44	0.54	1.15	0.50	0.27

Han et al., in preparation

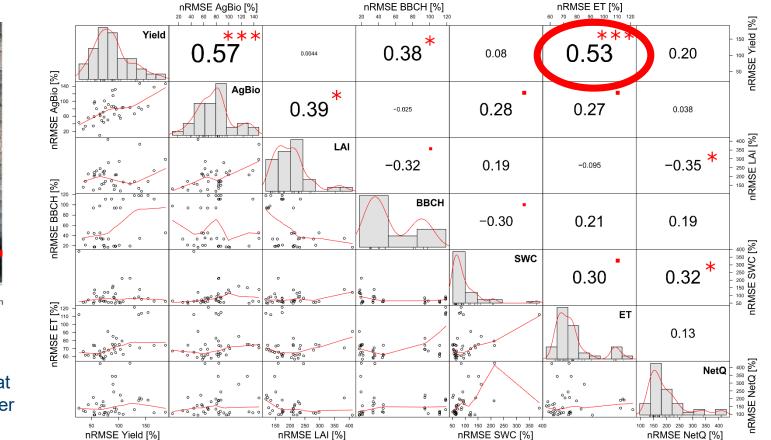
(Els Plans: 14/06/2021-18/07/2022)

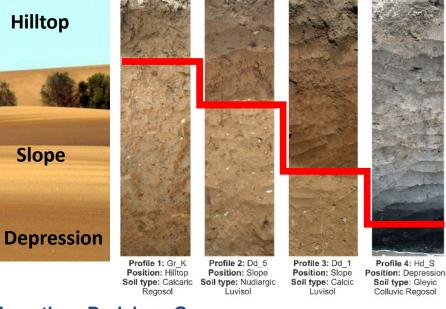

EVAPOTRANSPIRATION (NIGHTTIME)


Location: Wüstebach, Germany

Location: Rollesbroich, Germany 2023-09-26

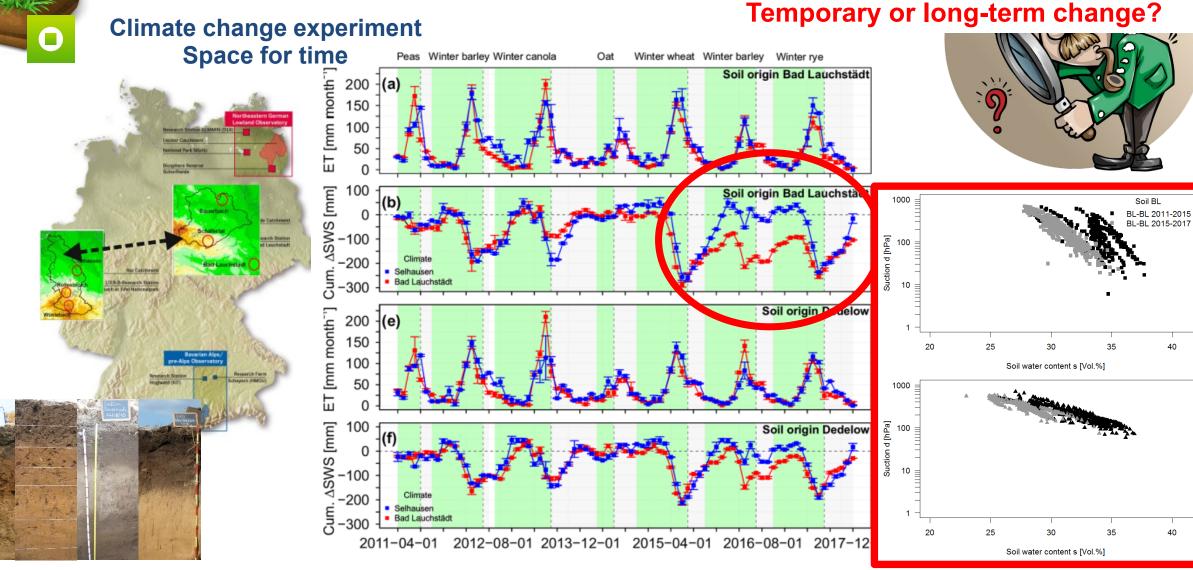
Groh et al. 2019, Quantification and Prediction of Nighttime Evapotranspiration for Two Distinct Grassland Ecosystems, Water Resource Research



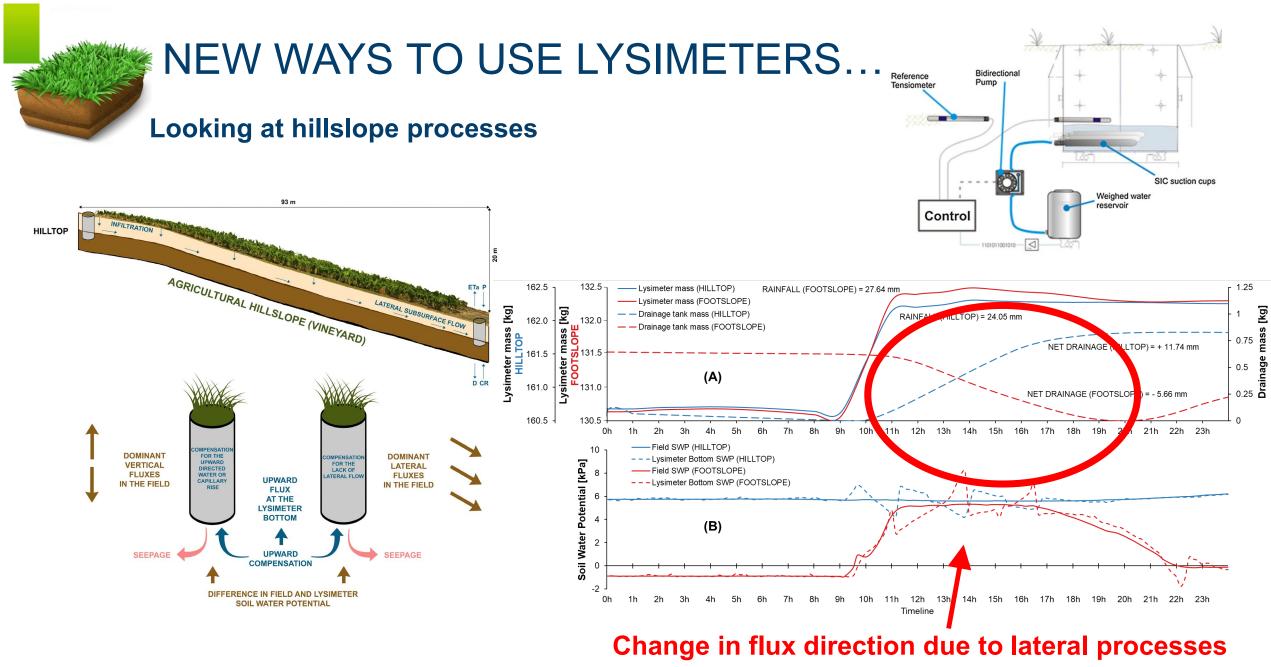

Landscape position/Soil profile effect

16

DATA-SET



Location: Dedelow, Germany


Groh et al. 2020, Crop growth and soil water fluxes at erosion-affected arable sites: Using weighing lysimeter data for model intercomparison, Vadose Zone J.

SOIL WATER DYNAMICS

Groh et al. 2020, Responses of soil water storage and crop water use efficiency to changing climatic conditions: a lysimeter-based space-for-time approach, Hydrol. Earth Syst. Sci.

Krevh et al. 2023, Water, doi: 10.3390/w15132398

TAKE HOME MESSAGE

- Data for all water balance components
- Tool to track water and solutes trough the soil
- Helps to identify hidden process across the soil-plantatmosphere continuum

Lysimeter are a holistic tool for quantifying and tracking water fluxes at the land surface and in the soil

- Data are helpful to improve process understanding
- High potential for climate change studies (e.g., Ecotrons)

Thank you for your attention