

Detecting multiscale carbon controls across different nutrient deposition scenarios in a Mediterranean tree-grass ecosystem

Laura Nadolski

26/09/2023

TERENO-OZCAR Conference

Sung-Ching Lee, Tarek El-Madany, Arnaud Carrara, Miguel Mahecha, Markus Reichstein, Anke Hildebrandt

1. Motivation

Future anthropogenic nutrient deposition

- Terrestrial ecosystems are important carbon sink
- Semi-arid ecosystems play an important role for interannual variability and trend of CO₂ uptake
- Still not too well represented in models

- Phosphorus and its relation with Nitrogen are crucial for functioning of the carbon cycle
- Human activities alter N:P ratio in atmosphere and ecosystems

Atmospheric depositions (mg m⁻² y⁻¹) (Peñuelas 2013)

- 3 EC sites above canopy, 3 subcanopy

650 mm yearly precipitation

Dehesa at Majadas de Tiétar, Extremadura, Spain (Carrara 2022)

2. Site and Data

Fertilization experiment

Fig.4: Flux towers and their footprints at Majadas de Tiétar measurement site (El-Madany et al. 2018)

- Radiometric, biometeorological, flux and soil data
- **2016-2022**
- 2015: Fertilization treatments with nitrogen (N) and nitrogen + phosphorus (NP)

North tower (footprint fertilized with Nitrogen)

Main tower/ Control tower

3. Research questions

Q.1: How does nutrient availability change the variability of the CO₂-flux, vegetation and soil properties in a semi-arid tree grass ecosystem on different time scales?

- \rightarrow H.1.1: We expect higher nutrient availability to increase the variability of the CO₂-flux, especially on longer time scales.
- → H.1.2: We expect that higher nutrient availability to affect more the biogenic drivers, where the grass layer has the dominant influence

Q.2: How does nutrient availability change the sensitivity of the CO₂ -flux to different environmental factors on short and long timescales?

→ H.2: We hypothesize that on shorter time scales both fertilized plots become more sensitive to solar radiation, while on longer timescales all plots are more sensitive to water than sun.

4. Methods

Revealing Carbon Dynamics in a Mediterranean Savanna Ecosystem

6

4.1. Decomposition

Singular Spectrum Analysis (SSA)

- Data-driven, non-parametric
- able to decompose a signal into (possibly) nonharmonic or aperiodic sub-signals
- Adequate for high-frequency measurements
- Implemented in R with Rssa-package by Nina Golyandina

4.2. Metrics of Mutual Information

Mutual Information (MI):

- Amount of information two variables X and Y hold in common → measures reduction of uncertainty in one variable given the knowledge of another
- Calculated with marginal and joint probability distributions
- Relative mutual information (normalized) is computed \rightarrow comparability
- Possible to detect **leading and lagging** effects

CO2
н
LE
AIR_PRESS
RH02
RH15
TA02
TA15
VPD
WIND_DIR
U*
SWDR
LWDR
POS0_PRIT
POS0_NDVIT
POS0_PRIG
POS0_NDVIG
SWC
SHF_SUN
SHF_SHD
TSOIL_SUN
TSOIL_SHD

CO ₂	µmol m-2
Sensible heat	W m-2
Latent heat	W/m-2
Air pressure	Pa
All pressure	Fa 0/
Relative humidity 2m	%
Relative humidity 15m	%
Temperature 2m	degree C
Temperature 15m	degree C
Water vapor pressure deficit	Pa
Wind direction	degrees
Friction velocity	m s-1
Short wave downward radiation	W m-2
Long wave downward radiation	W m-2
Incoming Photosynthetically Active radiation	umol m-2
Photochemical reflectance index above trees	
Normalized Difference Vegetation Index above trees	
Photochemical reflectance index above grass	
Normalized Difference Vegetation Index above grass	
normalized soil moisture content for top 20cm	
soil heat flux sun*	W m-2
soil heat flux shadow*	W m-2
soil temperature sun*	degreeC
soil temperature shadow*	degreeC

Revealing Carbon Dynamics in a Mediterranean Savanna Ecosystem

9

Reconstructed time series – 2016-2022

Temperature

Q.1 change of variability

Reconstructed time series – variability of **CO₂-flux**

- \succ variability of the CO₂-flux on seasonal scale increases at both fertilized plots
- > at CT no change in variability

Q.1 change of variability

Reconstructed time series – **NDVI variability**

- Tree layer NDVI variability decreases at NPT, increases at NT
- Grass layer NDVI variability highest at NT, lowest at NPT, no trend

Q.1 change of variability

creases at NT at NPT, no trend

Mutual information between CO₂-flux and its drivers – CT

Q.2: drivers of the CO₂-flux

NDVI: "greenness" of the vegetation

PRI: "efficiency of photosynthesis"

seasonal

Relative Mutual Information

Mutual information – differences between towers

daily

seasonal

Relative mutual Information

MI – leading and lagging effects – seasonal scale

Q.2: drivers of the CO₂-flux

Positive values (green/yellow) mean that the driver is leading the CO₂ -flux Negative values (blue) mean that the CO₂ -flux is leading its driver

NPT

6. Next steps

- Calculate monthly MI between CO₂-flux and most important drivers
- Compare how the MI changes over time at differently fertilized plots

Monthly relative MI shared between GEP and FCH4 (green)

and Ta and FCH4 (yellow) in a wetland

Chamberlain et al 2020: 681

Q.3: How do different N:P balances alter the effect heatwaves have on the drivers of the carbon flux?

Calculate **transfer entropy** = form of conditional MI → Compare information flow between (important) drivers and CO_2 flux before and after a heatwave event

8. Summary and Outlook

Q.1: How does nutrient availability change the variability of the CO₂-flux, vegetation and soil properties in a semi-arid tree grass ecosystem on different time scales?

- \rightarrow Seasonal variability of CO₂ increased within the investigation period at both fertilized plots
- \rightarrow NDVI variability increases at NT and decreases at NPT on the tree layer

Q.2: How does nutrient availability change the sensitivity of the CO₂ -flux to different environmental factors on short and long timescales?

- SWDR is important at daily and SWC+Tsoil become much more at seasonal scale
- Considering leading and lagging SWCn and Tsoil become important at all time scales
- sensitivity and leading/lagging of SWC are similar between NPT and CT, but not NT
- PRI_G becomes an important drivers at daily and seasonal scales for fertilized sites but not CT

Thanks for your attention!

References

Ahlström, A., M. R. Raupach, G. Schurgers, B. Smith, A. Arneth, M. Jung, M. Reichstein, J. G. Canadell, P. Friedlingstein, A. K. Jain, E. Kato, B. Poulter, S. Sitch, B. D. Stocker, N. Viovy, Y. P. Wang, A. Wiltshire, S. Zaehle, and N. Zeng. 2015. 'The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink', *Science*, 348: 895-99.

Casals, P., C. Gimeno, A. Carrara, L. Lopez-Sangil, and M. J. Sanz. 2009. 'Soil CO2 efflux and extractable organic carbon fractions under simulated precipitation events in a Mediterranean Dehesa', Soil Biology & Biochemistry, 41: 1915-22.

El-Madany, T. S., M. Reichstein, O. Perez-Priego, A. Carrara, G. Moreno, M. P. Martin, J. Pacheco-Labrador, G. Wohlfahrt, H. Nieto, U. Weber, O. Kolle, Y. P. Luo, N. Carvalhais, and M. Migliavacca. 2018. 'Drivers of spatio-temporal variability of carbon dioxide and energy fluxes in a Mediterranean savanna ecosystem', *Agricultural and Forest Meteorology*, 262: 258-78.

El-Madany, T. S., M. Reichstein, A. Carrara, M. P. Martin, G. Moreno, R. Gonzalez-Cascon, J. Penuelas, D. S. Ellsworth, V. Burchard-Levine, T. W. Hammer, J. Knauer, D. Kolle, Y. P. Luo, J. Pacheco-Labrador, J. A. Nelson, O. Perez-Priego, V. Rolo, T. Wutzler, and M. Migliavacca. 2021. 'How Nitrogen and Phosphorus Availability Change Water Use Efficiency in a Mediterranean Savanna Ecosystem', *Journal of Geophysical Research-Biogeosciences*, 126.

Golyandina, N., and A. Korobeynikov. 2014. 'Basic Singular Spectrum Analysis and forecasting with R', *Computational Statistics & Data Analysis*, 71: 934-54.

Kanniah, K. D., J. Beringer, P. North, and L. Hutley. 2012. 'Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: A review', *Progress in Physical Geography-Earth and Environment*, 36: 209-37.

Kondrashov, D., and M. Ghil. 2006. 'Spatio-temporal filling of missing points in geophysical data sets', *Nonlinear Processes in Geophysics*, 13: 151-59.

Liu, J. G., A. Valach, D. Baldocchi, and D. Y. F. Lai. 2022. 'Biophysical Controls of Ecosystem-Scale Methane Fluxes From a Subtropical Estuarine Mangrove: Multiscale, Nonlinearity, Asynchrony and Causality', Global Biogeochemical Cycles, 36.

Lorenzo, M. N., and I. Alvarez. 2020. 'Climate change patterns in precipitation over Spain using CORDEX projections for 2021-2050', Science of the Total Environment, 723.

Mahecha, M. D., M. Reichstein, H. Lange, N. Carvalhais, C. Bernhofer, T. Grunwald, D. Papale, and G. Seufert. 2007. 'Characterizing ecosystem-atmosphere interactions from short to interannual time scales', Biogeosciences, 4: 743-58.

Qi, Y. C., X. C. Liu, Y. S. Dong, Q. Peng, Y. T. He, L. J. Sun, J. Q. Jia, and C. C. Cao. 2014. 'Differential responses of short-term soil respiration dynamics to the experimental addition of nitrogen and water in the temperate semi-arid steppe of Inner Mongolia, China', *Journal of Environmental Sciences*, 26: 834-45.

Penuelas 2022

Supplementary material

Revealing Carbon Dynamics in a Mediterranean Savanna Ecosystem

Mutual information – differences between towers

Multiday timescale

Q.2: drivers of the CO₂-flux

Relative mutual Information

Seasonal timescale

Mutual information – leading and lagging effects - NPT

Q.2: drivers of the CO₂-flux

MI of CO2 and its drivers on seasonal scale - NPT