

zones

MN Pons^{1,5}, A Poszwa², A. Lücke³, M. Batsatsashvili³, T. Pütz³, H. Bogena³, R. Bol^{3,4}

¹Université de Lorraine, CNRS, LRGP, Nancy, France
²Université de Lorraine, CNRS, LIEC, Nancy, France
³Institute of Bio- and Geosciences, Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
⁴School of Natural Sciences, Bangor University, Bangor, United Kingdom
⁵LTSER Zone Atelier du Bassin de la Moselle, Nancy, France

Background

- Aquatic dissolved organic matter (DOM)
- Part of the carbon cycle
- Decomposition of plant, bacteria and algae
- Complex soluble organic compounds, without a clear composition
- Fulvic acids, humic acids, protein-like substances
- Protects aquatic organisms from UV radiation ⁽²⁾
- Toxic by-products during drinking water production 😕
- Allochthonous or autochthonous DOM
- Land use and land management
- Forested areas: lumbering, cleart-cuts (pest-infection, unwanted species)

The Wüstebach catchment

The Wüstebach catchment

Question: How the change of vegetation, sun irradiation, temperature, etc. may affect the dissolved organic matter, in terms of quantity and « quality » ?

Natural regeneration

How to characterize the dissolved organic matter ?

- Sophisticated and lab-intensive methods
 - NMR, HPLC-HRMS
- Optical methods
 - UV-visible spectroscopy, fluorescence
 - Lab as well as in-situ
 - Can be easily used in routine
- Wüstebach catchment
 - Sampling on a weekly basis
 - UV-vis spectra and excitation-emission matrices since 2011
 - It is possible to extract spectral descriptors to track the « quality » of DOM

Spectral descriptors

- For more info: poster 93601
- Inner-filter effect: dilution before acquiring fluorescence data
- A₂₅₄ final < 0.1 cm⁻¹

Nitrates

- Clear-cut: september 2013
- Comparison of W01 (source) and W14 (outlet) of the Wüstebach
- With the reference stream: W15 (source) and W17 (outlet)

•

14/12/2021

14/12/2021

01/08/2020

01/08/2020

A slight increase of the DOM molecular weight is possible

Both descriptors decrease when MW increases

What other factors can influence DOM?

Higher temperature due to solar irradiation for W17 Stabilization in 2016 due to lowland vegetation ? (ferns, ...)

Also for reference stream (less shade at forest edge ?)

No variation of T_{air} at a larger scale

Monschau

Take-home message

- Effect of the clear-cut on DOM quality was noticed shortly after the clear-cut
- Stabilization in 2017 (about 3 years after the clear-cut)
 - Change in type of vegetation, sun irradiation, temperature
- Some effect on the reference stream
 - Difficult to explain so far, maybe shading effect
- Data analysis not finished: some additionnal descriptors are examined

Acknowledgement: TA-RA access program of eLTER

