Effect of clear-cutting on the dissolved organic matter in the Wüstebach catchment

MN Pons ${ }^{1,5}$, A Poszwa², A. Lücke ${ }^{3}$, M. Batsatsashvili³, T. Pütz ${ }^{3}$, H. Bogena ${ }^{3}$, R. Bol ${ }^{3,4}$

${ }^{1}$ Université de Lorraine, CNRS, LRGP, Nancy, France
${ }^{2}$ Université de Lorraine, CNRS, LIEC, Nancy, France
${ }^{3}$ Institute of Bio- and Geosciences, Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany ${ }^{4}$ School of Natural Sciences, Bangor University, Bangor, United Kingdom
${ }^{5}$ LTSER Zone Atelier du Bassin de la Moselle, Nancy, France

UNIVERSITÉ DE LORRAINE

Background

- Aquatic dissolved organic matter (DOM)
- Part of the carbon cycle
- Decomposition of plant, bacteria and algae
- Complex soluble organic compounds, without a clear composition
- Fulvic acids, humic acids, protein-like substances
- Protects aquatic organisms from UV radiation ()
- Toxic by-products during drinking water production $:$
- Allochthonous or autochthonous DOM
- Land use and land management
- Forested areas: lumbering, cleart-cuts (pest-infection, unwanted species)

The Wüstebach catchment

The Wüstebach catchment

Question: How the change of vegetation, sun irradiation, temperature, etc. may affect the dissolved organic matter, in terms of quantity and « quality » ?

Natural regeneration

How to characterize the dissolved organic matter ?

- Sophisticated and lab-intensive methods
- NMR, HPLC-HRMS
- Optical methods
- UV-visible spectroscopy, fluorescence
- Lab as well as in-situ
- Can be easily used in routine
- Wüstebach catchment

- Sampling on a weekly basis
- UV-vis spectra and excitation-emission matrices since 2011
- It is possible to extract spectral descriptors to track the « quality » of DOM

Spectral descriptors

- For more info: poster 93601
- Inner-filter effect: dilution before acquiring fluorescence data
- A_{254} final $<0.1 \mathrm{~cm}^{-1}$

Nitrates

Three emission spectra of interest

FI (Mc Knight et al. 2001) Origin of fulvic acids
BIX (Huguet et al., 2009)
Recent DOM, mostly autochthonous
Humification index HIX
(Ohno, 2002; Zolnay, 2003)

Results: 2011-2013-2021

- Clear-cut: september 2013
- Comparison of W01 (source) and W14 (outlet) of the Wüstebach
- With the reference stream: W15 (source) and W17 (outlet)

Results: 2011-2013-2021

Results: 2011-2013-2021

A slight increase of the DOM molecular weight is possible

Both descriptors decrease when MW increases

Results: 2011-2013-2021

Results: 2011-2013-2021

What other factors can influence DOM ?

Higher temperature due to solar irradiation for W17
Stabilization in 2016 due to lowland vegetation ?
(ferns, ...)
Also for reference stream (less shade at forest edge ?)

No variation of $\mathrm{T}_{\text {air }}$ at a larger scale

Take-home message

- Effect of the clear-cut on DOM quality was noticed shortly after the clear-cut
- Stabilization in 2017 (about 3 years after the clear-cut)
- Change in type of vegetation, sun irradiation, temperature
- Some effect on the reference stream
- Difficult to explain so far, maybe shading effect
- Data analysis not finished: some additionnal descriptors are examined

Acknowledgement: TA-RA access program of eLTER

