Self-referenced Cosmic-rays Neutron Sensing probes based on contextual muons detection

Luca Stevanato¹, Enrico Gazzola¹, Barbara Biasuzzi¹, Luca Morselli¹, Marcello Lunardon^{1,2}, Stefano Gianessi¹

1 Finapp S.r.l., via del commercio, 27 Montegrotto Terme (PD)

2 Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo, 8 - 35121 Padova.

Outline of the presentation

1. The Finapp CRNS network

2. Muons detection as a self-referenced incoming correction

3. Muons detection as a site-specific incoming correction

1. Finapp CRNS network

The growing Italian network

Finapp is the most used CRNS probe in Italy:

- ARPA (regional environmental agencies): 8 Soil Moisture probes + 2 Snow Water Equivalent probes (on field)
- ARPA Veneto: 25 probes for Snow Water Equivalent (partially delivered)
- ANAS (road infrastructures company): 2 probes for landslide early warning experimentation (on field)
- **Protezione Civile Veneto** (civil protection agency): **6** probes for fire risk early warning (to be delivered)
- Research institutions (POLITO, UNIBO, UNIPD, FEM...): > 10 probes on field for various applications (agriculture, hydrology, glaciology, climate); 5 probes to be delivered to CNR and installed in southern Italy
- Private customers (not shown on map): agriculture applications

Finapp: a range of applications

Precision Farming Irrigation scheduling

Early warning systems: floods and landslides

Rover mapping

Early warning systems: wildfire

Snow water equivalent

Water leaks pre-location

Data and user interface

- 1. Direct data transfer to cloud
- 2. Plots visualization
- 3. Downloadable datasets
- 4. Dedicated services

2. Muons as self-referenced incoming correction

Finapp specialty: muons detection

The patented Finapp detector can discriminate and count **neutrons** and **muons**

The incoming correction

How to compensate for the natural variation of cosmic rays flux?

$$f_I = I_{ref}/I$$

The traditional way is refferring to the Neutron Monitor Database (NMDB) global network

Finapp as a self-referenced probe

Muons flux is correlated to the incoming neutrons flux.

=> Finapp can refer to itself for incoming correction by using the relative variation of the muons flux

We collected solid evidence of the correlation by comparison to NMDB-JUNG

Representative case-studies

1. Bondeno, Italy (2 years long)

2. Cima Pradazzo (2200 m altitude)

3. Marrakesh (Morocco)

3. Muons as <u>site-specific</u> incoming correction

The incoming muons flux is clearly correlated to the incoming neutrons flux.

Yet there are also differences.

Can we claim they are a true site-specific effect?

Site-specific differences

Sample 1: Marina di Ravenna, May 2023

On this occasion JUNG reported a major drop unmatched by most of our stations.

In our Ravenna site it would suppress the probe response to the floods that hit the Emilia Romagna region on these days.

Site-specific differences

Sample 2: Vienna, August 2023

On this occasion JUNG reported a major drop unmatched by most of our stations.

In our Vienna site it would suppress the effect of a significant precipitation.

Site-specific differences

Sample 3: Castelfranco Veneto, August 2023

Also here the drop in JUNG counts would suppress the effect of significant precipitations

Conclusion

Every Finapp station can consistently measure the incoming muons flux

=> a Finapp network could be used as a costeffective distributed muons observatory

- The incoming muons flux is correlated to the incoming neutrons flux while providing a site-specific monitoring
- => Finapp is a self-referenced CRNS probe
- Differences with JUNG: possible effects of different energy spectrum, altitude, weather

=> Targeted experiments may be interesting for the community

Thank you for your attention!

Life from cosmos

<u>Via del Commercio 27 - Montegrotto Terme (PD) - IT</u> <u>www.finapptech.com</u> <u>info@finapptech.com</u>

