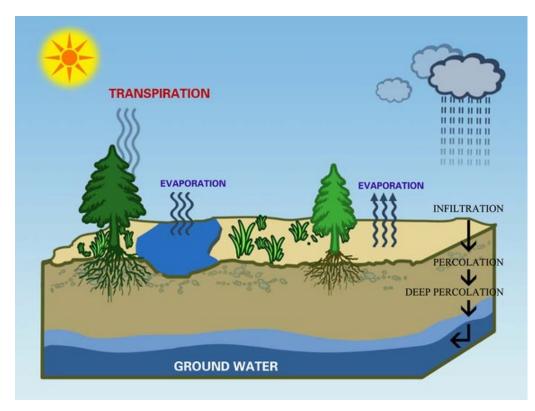
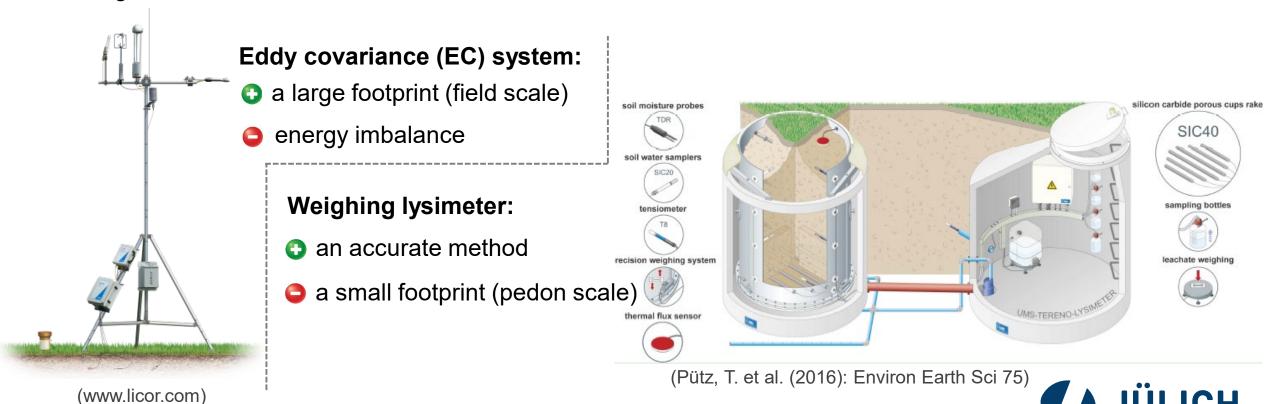
Analysis of Scale-dependent Spatial Correlations of Actual Evapotranspiration Measured by Lysimeters


2023-9-26 I Xiao Lu¹, Jannis Groh^{1,2,3}, Thomas Pütz¹, Alexander Graf¹, Katrin Schneider⁴, Harry Vereecken¹, and Harrie-Jan Hendricks Franssen¹

¹Institute of Bio- And Geoscience IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany ²Institute of Crop Science and Resource Conservations (INRES), University of Bonn, Bonn, Germany ³Research Area 1 "Landscape Functioning", Leibniz Centre For Agricultural Landscape Research (ZALF), Müncheberg, 15374, Germany ⁴Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Background and Motivation

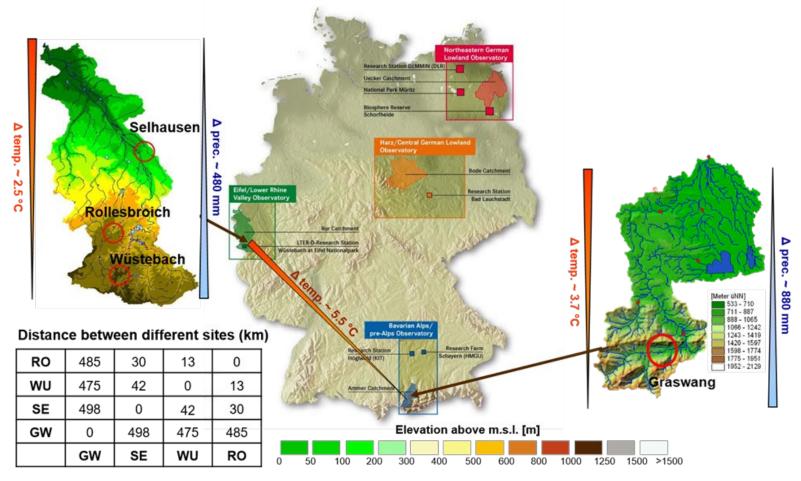
(Wang & Dickinson, 2012)


- Evapotranspiration (ET) is a central component of the global water cycle.
- Precise assessment of actual evapotranspiration (ETa) is important for a broad range of scientific disciplines, e.g. agricultural water management and drought monitoring.
- ETa is difficult to measure.
- Accurate determination of ETa rate remains a challenge.
- Limited availability of long-term ETa measurements.

Background and Motivation

Member of the Helmholtz Association

- The main objective of this study was to investigate the information content of lysimeters regarding ETa for larger areas.
- Our hypothesis is that a lysimeter measurement provides information on ETa which is representative for a large area.

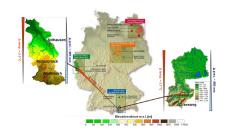


Page 3

26 Sep 2023

Study Sites

TERENO-SOILCan Lysimeter Network


- √ 4 sites
- ✓ 23 lysimeters
- ✓ EC stations nearby
- ✓ Continuous daily data from 2015-2020

(modified from Pütz et al., 2016)

Study Sites

TERENO-SOILCan Lysimeter Network

Station	Elevation (m a.s.l.)	No. of lysimeters	Abbrev.	Soil location	Soil origin	Soil texture	Vegetation (Lysimeter)	Ecosystem (EC)	
Selhausen	104	3	SEro	SE	RO	silty loam	grass	crop	
		3	SEwu	SE	WU	silty clay loam	grass		
		3	SEse	SE	SE	silty loam	crop		
Rollesbroich	515	6	RO	RO	RO	silty loam	grass	grass	
Wüstebach	625	6	WU	WU	WU	silty clay loam	grass	forest	
Graswang	864	2	GW	GW	GW	clay	grass	grass	

Statistical Analysis

1. Pearson correlation coefficient (PCC) of standardized anomaly of ETa (between sites) provides overall measure of correlation:

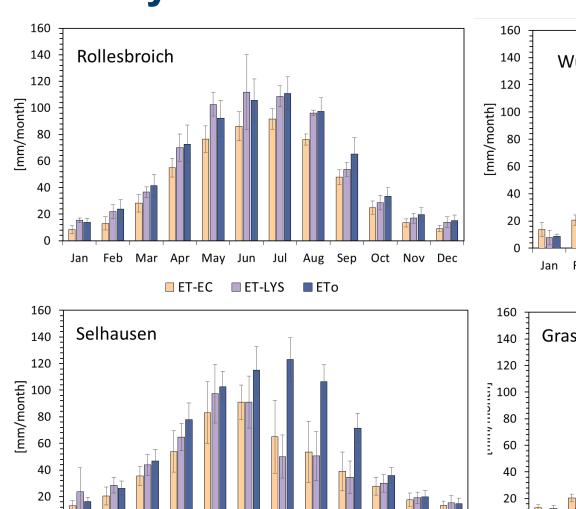
$$\Delta ET = ET_{a,i} - \overline{ET_{a,i}}$$

$$SA_{ET_a} = \frac{\Delta ET}{\sigma_{ET_a,i}}$$

ΔET - daily ETa anomaly

ET_{a,i} - actual daily ET measurements on day i

 $\overline{ET_{a.i}}\,$ - long-term mean value of daily measurements (polynomial mean over 2015-2020)

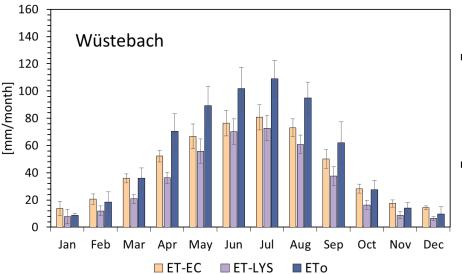

SA_{ETa} - standardized anomalies of ETa

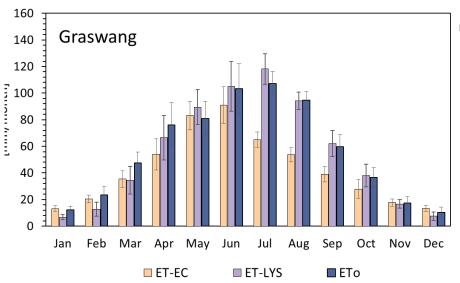
 $\sigma_{ET_a,i}$ - long-term standard deviation (SD) of daily measurements (polynomial SD over 2015-2020)

2. Wavelet transform coherence (WTC) analysis extends the analysis into time-frequency space, can analyze correlations at different temporal scales and for lagged responses.

Page 6

Monthly sum of ET




Jul

■ ET-LYS (SEse)

Aug

Sep

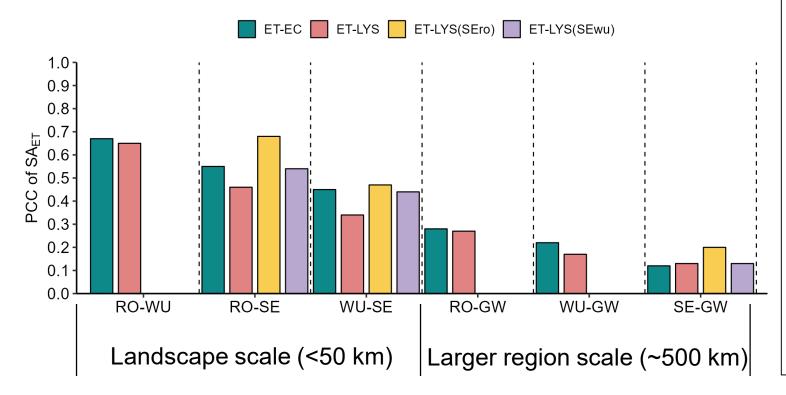
- Monthly ET-EC higher than ET-LY and ET₀ at WU.
- Different vegetation type at WU on the lysimeters (grass) and on the field (forest).
- The lysimeters at WU at the land surface receive less radiation than the EC tower while they are partly in the vegetation shadow.

ET-EC

Feb Mar

Apr May Jun

■ ETo

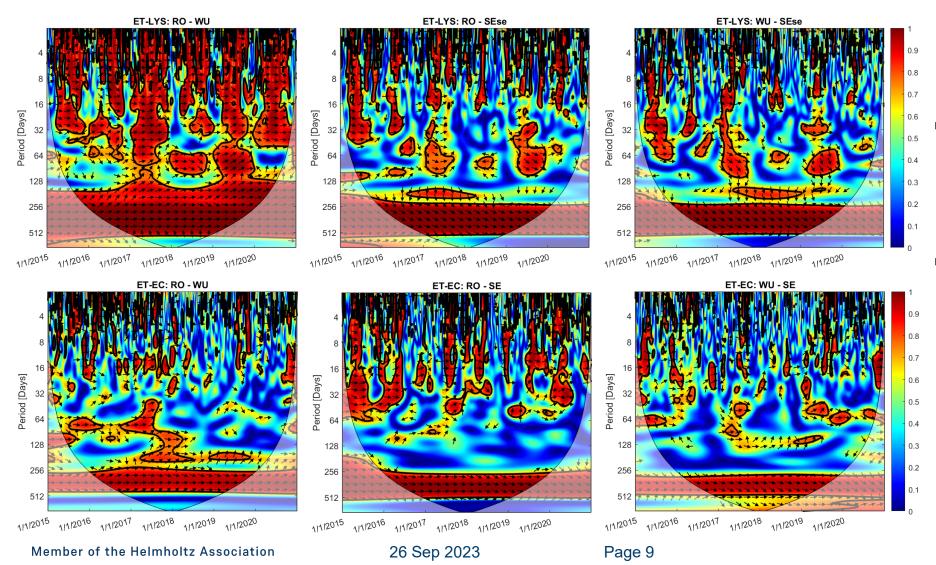

Oct Nov Dec

Page 7

Pearson Correlation of Standardized Anomalies of ETa

Plot scale

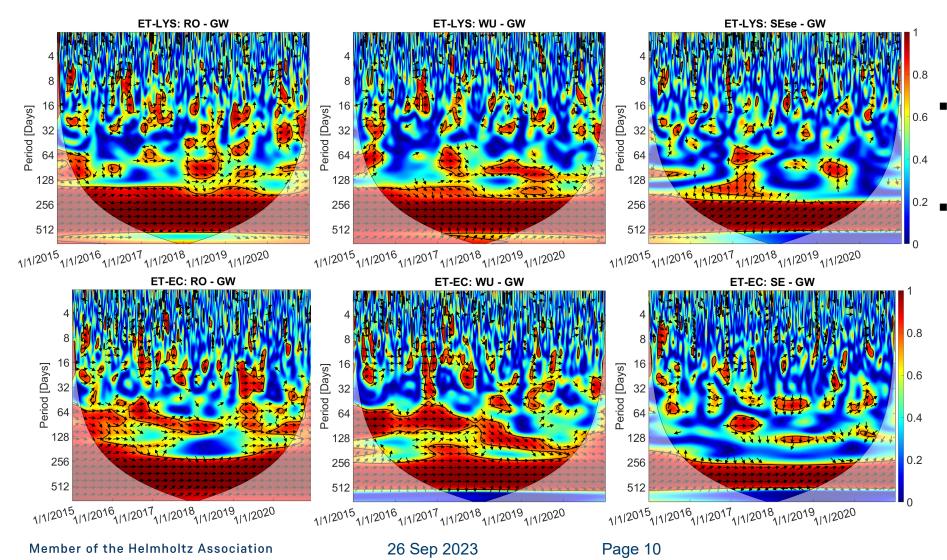
	RO	WU	SEse	SEro	SEwu	GW
PCC	0.96	0.93	0.92	0.92	0.88	0.96
Stdv	0.02	0.02	0.04	0.02	0.05	1



- At the plot scale (lysimeters at same site) SA_{LYS-ET} shows high correlations (>0.88). Measurements are representative at the plot scale.
- At landscape scale (< 50km distances)
 SA_{LYS-ET} correlations are still quite high (~0.5).
- At larger regional scale (~500 km distance), still some correlation left (~0.2).
- Correlations for lysimeters are not much lower (even higher) than for EC.

Wavelet Transform Coherence

Landscape scale (< 50km)



- Strongest correlations for time scales <3months and yearly cycle
- Correlations at small time scales (<1 week) larger for LYS than for EC

Wavelet Transform Coherence

Larger regional scale (~500km)

- Strongest correlations for time scales at yearly cycle
- Less coherence than landscape scale at small time scales (<1 week)

Conclusions and Outlook

Can weighing lysimeter provide information on ETa which is representative for a large area?

- Six year daily ETa data sets from lysimeters and EC stations for 4 sites across Germany were explored using Pearson correlation coefficient and wavelet coherence.
- ETa measured by lysimeters showed similar spatial correlations (between sites) as ETa measured by EC towers despite the different sizes of measurement footprints for lysimeters and EC.
- Lower spatial correlations in winter and under drought condition.
- Overall, this work showed that weighing lysimeters are representative at plot scale, landscape scale and for a larger region.
- Next steps: disentangle the different attributions to the observed spatial correlation of ETa.

THANKS!

Any question?

Xiao Lu xi.lu@fz-Juelich.de

