

The influence of clear-cut on nutrient dynamics in the Wüstebach catchment (Eifel, Germany) Preliminary results from a modelling study

Annemarie Bäthge¹, Michael Rode^{1,2}, Heye Bogena³, Mufeng Chen¹, Roland Bol³, Shirin Moradi³, Thomas Pütz³

¹ Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany

- ² Institute of Environmental Science and Geography, University of Potsdam, Potsdam-Golm, Germany
- ³ Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere Institute (IBG-3), Jülich, Germany

17.10.2023

Relevance

Consequences of forest dieback and clear-cutting on hydrology and nutrient dynamics

Natural forest dieback and harvesting methods like clear-cutting can lead to an increased nutrient concentration in water bodies which may cause environmental deterioration and possibly even drinking water degradation

Relevant processes:

- No plant transpiration \rightarrow Increased soil moisture and leakage
- Additional nutrient input from felling remains
- Increased soil moisture and soil temperature → enhancing degradation of organic matter, nitrification and denitrification
- Regeneration of vegetation \rightarrow ?

Aerial image spring 2013

Aerial image spring 2016

Fig. 1: Aerial image of the Wüstebach catchment before and after clear-cut. From Bogena et al. 2021.

Objectives

1. Successfully model the hydrology and dynamics of nitrogen and DOC in the Wüstebach catchment for the period 2010 to 2020, including the effect of the clear-cut in late summer 2013

2. Disentangle the influence of by clear-cut affected processes on nutrient dynamics: Hydrological fluxes, Turnover and Plant-Soil-Interaction

3. Investigate how vegetation regeneration is altering hydrology and dynamics of nitrogen and DOC after clear-cut

Fig. 2: Clear-cut area in Wüstebach catchment in 2023, Annemarie Bäthge.

Fig. 3: Map of the study area including soil types and measurment instruments.

- 3 Discharge gauges 15 min resolution
- Weekly discharge sampling for both catchments and 12 subcatchments (NO₃-Nitrogen and DOC)
- TriOS proPS measures NO₃-Nitrogen every 15 min at the Wüstebach outlet

The Hydrological Predictions for the Environment (HYPE) Model Process-based and semi-distributed model

Forcing data (daily resolution):

- Precipitation
- Air temperature
- Optional: Nitrate concentration in precipitation

Fig. 4: Schematic model structure of subasins and hydrological response units (HRU) (left) as well as soil structure in a HRU (right). From Lindström et al. 2010.

Model Setup Aggregate properties

Model Calibration and Validation Determine properties

Calibration period: 2010 – 2014

Validation Period: 2014 – 2020

Evaluated model results [Daily averages]:

- Discharge
- Soil moisture in root zone
- NO₃-Nitrogen concentration in discharge
- DOC concentration in discharge

Model performance criteria:

- Nash-Sutcliffe Efficiency (NSE)
- Kling-Gupta Efficiency (KGE)
- Normalized Root Mean Squared Error (NRMSE)

Results & Discussion: Hydrology Average Daily Discharge

Fig. 7: Simulated and observed average daily discharge at the Wüstebach outlet and daily precipitation at DWD station Monschau-Kalterherberg.

Results & Discussion: Nutrient dynamics Share of different flows to total discharge

Fig. 21-22: Share of surface runoff, interflow from first and second soil layer and baseflow to total discharge in subasin 12 and 9.

 \rightarrow The clear-cut causes a higher share of Interflow in the top soil in year 2014

Results & Discussion: Hydrology Average Daily Soil Moisture in Root Zone

Wüstebach catchment

Fig. 8: Simulated and observed average daily soil moisture in root zone in the Wüstebach catchment.

Calibration NSE: 0.70 KGE: 0.75 NRMSE: 0.06

Validation NSE: 0.73 KGE: 0.88 NRMSE: 0.054

→ The model could reproduce the soil moisture increase after clear-cut

Results & Discussion: Hydrology Average Daily Soil Moisture in Root Zone

- The model results differ more strongly from the observations in tributary subcatchments
- The general negative trend in soil moisture could not be reproduced

No clear-cut Tributary

Fig. 9: Simulated and observed average daily soil moisture in root zone in subbasin 12 (left) and 9 (right).

Clear-cut Tributary

Results & Discussion: Hydrology Average Daily Soil Moisture in Root Zone

The soil classes in the model are not able to represent all subcatchments

 \rightarrow A distinction between riparian and nonriparian zone would probably improve the model

→ More detailed measurements of soil characteristics – mainly field capacity - is necessary

Results & Discussion: Nutrient dynamics Average Daily Nitrate-N concentration in discharge

Fig. 16: Simulated average daily NO3-Nitrate concentration and daily means of observed NO3-Nitrate concentration with TriOS proPS in discharge at the Wüstebach outlet

Results & Discussion: Nutrient dynamics Average Daily Nitrate-N concentration in discharge

Wüstebach catchment

→ High outliers in summer 2014 could not be reproduced by the model

Fig. 17: Simulated average daily NO3-Nitrate concentration and daily means of observed NO3-Nitrate concentration with TriOS proPS in discharge at the Wüstebach outlet

www.ufz.de

Results & Discussion: Nutrient dynamics Average Daily Nitrate-N concentration in discharge

Clear-cut Tributary...

Fig. 18-20: Simulated average daily NO3-Nitrate concentration and weekly laboratory measurements of NO3-Nitrate concentration in discharge of subbasin 9 în different scenarios.

- → The increase of soil moisture and soil temperature after clear-cut even leads to a dilution of nitrogen and increased denitrification (+25 %) in HYPE
- → The increase of nitrogen can only be attributed to an increased nutrient input by the felling remains
- → An increased N-uptake by the regenerated vegetation is able to buffer Nleaching

Results & Discussion: Nutrient dynamics

Average Daily Dissolved Organic Carbon Concentration in Discharge

Wüstebach catchment

Fig. 13: Simulated average daily DOC concentration and weekly laboratory measurements of DOC concentration in discharge at the Wüstebach outlet.

Results & Discussion: Nutrient dynamics Average Daily Dissolved Organic Carbon Concentration in Discharge

Clear-cut Tributary...

Fig. 24-26: Simulated average daily DOC concentration and weekly laboratory measurements of DOC concentration in discharge of subbasin 9 în different scenarios.

→ Analogous to Nitrogen, similar pattern can be observed for DOC

Conclusion

 Except DOC simulation, the HYPE model was able to reproduce average catchment characteristics. But detailed processes in subcatchments were not well represented.

In the model:

- 2. The increased nutrient input from felling remains was mostly responsible for the catchment's response to clear-cut regarding nutrient dynamics.
- 3. The regenerated vegetation is buffering the nutrient leakage very quickly by a high nitrogen uptake.

References

Bogena, Heye R.; Stockinger, Michael P.; Lücke, Andreas (2021): Long-term stable water isotope and runoff data for the investigation of deforestation effects on the hydrological system of the Wüstebach catchment, Germany. In: *Hydrol. Process.* 35 (1), Artikel e14006. DOI: 10.1002/hyp.14006.

Lindström, Göran; Pers, Charlotta; Rosberg, Jörgen; Strömqvist, Johan; Arheimer, Berit (2010): Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. In: *Hydrology Research* 41 (3-4), S. 295–319. DOI: 10.2166/nh.2010.007.

Soil model and flows in HYPE

Nitrogen Pools and Turnover in HYPE

www.ufz.de

Soil Moisture and Temperature Function Turnover in HYPE

Humidity Function Denitrification in HYPE

