

Combined Effects of Geological Heterogeneity and Discharge Events on Groundwater and Surface Water Mixing

Guilherme E.H. Nogueira ¹; Daniel Partington ²; Ingo Heidbüchel ^{1,3}; Jan H. Fleckenstein ^{1,3}

- 1 Department of Hydrogeology, UFZ-Leipzig, Germany
- 2 National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, Australia
- 3 Bayreuth Centre of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany

Introduction and Motivation

- Surface water (SW) and groundater (GW) mixing is relevant for biogeochemical processes affecting water quality around river corridors;
- SW-GW mixing has mainly been investigated in smallscale 2D domains, under the streambed, and mostly under steady-state conditions.

Our main objectives:

- 1) Assess how SW-GW mixing develops through strongly contrasting geological units;
- 2) Evaluate how mixing is affected by different discharge events (i.e., magnitudes and duration) within different geological scenarios.

modified from Nogueira et al. (2022, HESS)

Methods and Virtual Experiments

Methods and Virtual Experiments

- **Geological Scenarios**
 - Markov Chain model and indicator simulator (TProGS)
 - 30 different bimodal fields with different sand-silt ratio (e.g., 1:4, 1:1, 4:1);
 - Low and high K contrast cases ($\Delta K = 10$ and 1000).
 - Equivalent pure-homogeneous models based on geometric mean of hydraulic conductivity (K);
 - = 70 geological scenarios

Fully Coupled 3D Numerical Model

- Transient simulations (HydroGeoSphere);
- Eight different discharge events with different durations and peak discharges (total of 560 model runs).
- **Mixing Analysis**
 - Hydraulic Mixing Cell (HMC Partington et al., 2011);
 - Tracking of infiltrating SW and local flowing GW, and their fractions and mixing in different locations and times.

SW-GW Exchange <u>Patterns</u>

- Similar EF patterns among equivalent homogeneous and heterogeneous models;
- Subordinate impact of geological heterogeneity on EF patterns;
- Increasing EF magnitudes with average K values (and sand fraction).

• SW-GW Exchange Fluxes

- Positive net-EF for all scenarios: net-losing conditions in the reach (with restricted gaining locations);
- Increasing net-EF with sand fraction (i.e., increasing average *K*).
- Larger increase of EF for heterogeneous models.
- Overall larger EF magnitudes and net-EF for larger K contrast (inset plot);

www.ufz.de

Results: Riparian SW-GW Mixing

SW-GW Mixing <u>Extent</u>

- SW-GW mixing increases spatially with average *K* values (i.e., EF magnitudes);
- Larger mixing area for heterogeneous models (and for large *K* contrast).

7

Results: Riparian SW-GW Mixing

SW-GW Mixing <u>Extent</u>

- SW-GW mixing increases spatially with average *K* values (i.e., EF magnitudes);
- Larger mixing area for heterogeneous models (and for large *K* contrast).

- Larger increase in mixing area for larger events
- Larger increase in mixing area for heterogeneous models

 Sensitivity analysis for changes in SW-GW mixing extent from baseflow values (Zheng and Bennett, 2002):

$$X_{m,n} = \frac{\gamma_m(\alpha_n + \Delta \alpha_n) - \gamma_m(\alpha_n)}{\Delta \alpha_n / \alpha_n}$$

- SW-GW mixing extent is more sensitive to hydrological variations than to changes in K values
 - Higher sensitivity at high conductivities ٠
 - Higher sensitivity for short events with low peak discharge (low cumulative discharge) ٠

Conclusions

Geological heterogeneity:

- substantial effect on EF magnitudes
- higher heterogeneity:
 - increases EF magnitude ٠
 - increase is larger for higher sand fractions / higher K contrasts ٠
- subordinate effect on SW-GW mixing extent
- higher heterogeneity:

- increases SW-GW mixing extent •
- increase is larger for higher sand fractions / higher K contrasts
- Discharge event characteristics:

- stronger effect on SW-GW mixing extent
- long events with higher discharge:
 - cause larger increases in SW-GW mixing extent
 - increase is larger for heterogeneous scenarios / higher sand fractions / higher K contrasts
- Sensitivity of mixing extent is highest for high conductivities and ٠ small discharge events

its from BF

ixing

• Nogueira GEH, Partington D, Heidbüchel I, Fleckenstein JH. "Combined Effects of Geological Heterogeneity and Discharge Events on Groundwater and Surface Water Mixing". Journal of Hydrology. (under review)

• References:

- Nogueira GEH, Schmidt C, Partington D, Brunner P, Fleckenstein JH. 2022. "Spatiotemporal variations in water sources and mixing spots in a riparian zone". Hydrology and Earth System Sciences 26 (7): 1883–1905 DOI: 10.5194/hess-26-1883-2022
- Partington D, Brunner P, Simmons CT, Therrien R, Werner AD, Dandy GC, Maier HR. 2011. "A hydraulic mixing-cell method to quantify the groundwater component of streamflow within spatially distributed fully integrated surface water-groundwater flow models". Environmental Modelling and Software 26 (7): 886–898 DOI: 10.1016/j.envsoft.2011.02.007
- Zheng C, Bennett G. 2002. "Applied Contaminant Transport Modeling". Wiley-Interscience: New York.

Thank you for your attention! Questions?

