

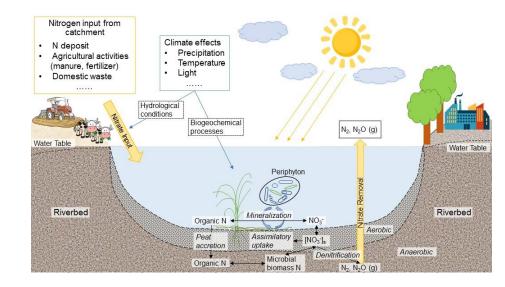
Disentangling in-stream nitrate uptake pathways based on two-station high-frequency monitoring in high-order streams

Michael Rode¹, Xiaolin Zhang¹, Xiaoqiang Yang¹, Robert Hensley³, Andreas Lorke⁴

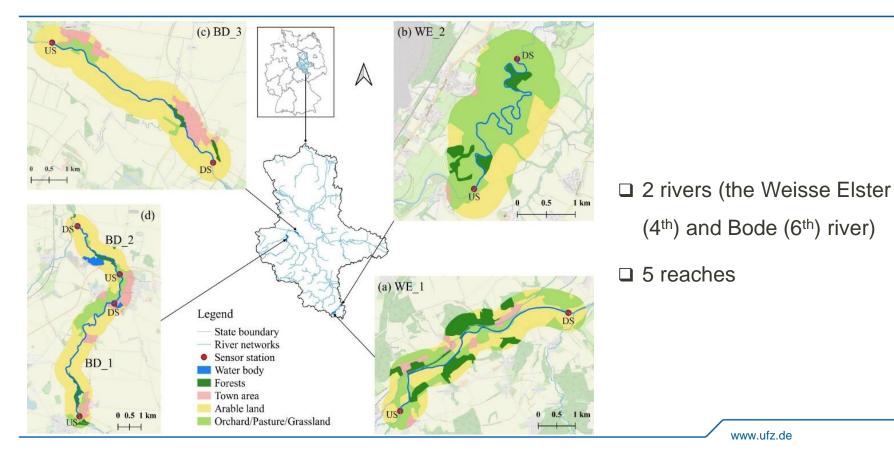
¹Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany.

²Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Germany. ³Battelle - National Ecological Observatory Network, Boulder, U.S.

⁴Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany


Why and What we want to do?

Motivation


- In-stream biogeochemical processes can highly influence nutrient loads transporting from land surface to the sea.
- Nitrogen is one of the most concerned nutrients when considering water quality.
- Research about N uptake in high order streams is still limited.

Main research questions

- How does reach-scale N uptake process change under different environment conditions and river morphology?
- How does different reach-scale N uptake pathways change?

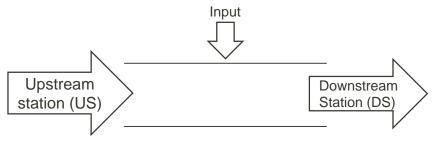
Methods Study reaches

Various reach features

Reach	River	Length (m)	Width (m)	Sinuosity	Slope (‰)	River morphology status ¹ & surrounding landscape ²
WE_1	Weiße Elster	6280	23	1.20	0.5	Strongly modified and straightened; intensive arable land
WE_2	Weiße Elster	6100	23	2.65	0.89	Slightly modified and remains meandering; permanent grassland
BD_1	Middle Bode	7170	17	1.44	0.6	Slightly modified; considerable riparian forest and grassland
BD_2	Middle Bode	3360	17	1.24	0.6	Slightly to moderately modified; arable land with some forest
BD_3	Lower Bode	6150	20	1.12	0.036	Completely changed; intensive arable land

Methods Study reaches and monitoring set-up

Multi-parameter and UV sensor at US and DS
2-3 campaigns in each reach, 11 campaigns in total
3-14 days each campaign, accompanied with water samples


Reach	Deployment periods (start date - end date)	Campaigns (seasons)
WE_1	1316.05.2019 1823.09.2019	2019-05 WE_1 (post-wet) 2019-09 WE_1 (dry)
WE_2	1620.05. 2019 2326.09.2020	2019-05 WE_2 (post-wet) 2019-09 WE_2 (dry)
BD_1	1720.06.2019 0308.10.2020	2019-06 BD_1 (post-wet) 2020-08 BD_1 (dry)
BD_2	2024.06.2019 1219.08.2020 19.0702.08.2021	2019-06 BD_2 (post-wet) 2020-08 BD_2 (dry) 2021-07 BD_2 (transition)
BD_3	2126.08.2019 27.0803.09.2020	2019-08 BD_3 (dry) 2020-08 BD_3 (dry)

Methods

.

Two-station mass balance

Conceptual model of two-station mass balance method:

Multiple parameters measuring:

- Dissolved Oxygen (DO)
- Nitrate-N concentration
- Specific conductivity

Stream metabolism

- Areal net ecosystem production (NEP)
- Ecosystem respiration (ER)
- Gross primary production (GPP)

Nitrate uptake pathways

- Areal net nitrate uptake (U_{NET})
- Autotrophic assimilation (U_A)
- Heterotrophic uptake $(U_D = U_{NET} U_A = U_{den} + U_{het})$

Methods Detailed equations

Stream metabolism

- Areal net ecosystem production (NEP)
- Ecosystem respiration (ER)
- Gross primary production (GPP)

Nitrate uptake pathways

- Areal net nitrate uptake (U_{NET})
- Autotrophic assimilation (U_A)
- Heterotrophic uptake $(U_D = U_{NET} U_A = U_{den} + U_{het})$

Stream metabolism

•
$$NEP_t = \frac{Q_{DSt+\tau/2}[DO]_{DSt+\tau/2} - Q_{USt-\frac{\tau}{2}}[DO]_{USt-\frac{\tau}{2}} - Q_I[DO]_I - kQ_t[DO]_{deft}}{w \times L}$$

•
$$ER_t = NEP_{nighttime,t}$$

• $GPP_t = NEP_t + ER_{mean}$

Nitrate uptake pathways

•
$$U_{NETt} = \frac{Q_{USt-\tau/2}[NO_3^- - N]_{USt-\tau/2} - Q_{DSt+\frac{\tau}{2}}[NO_3^- - N]_{DSt+\frac{\tau}{2}}}{w \times L}$$

• $U_{At} = \frac{GPP_t}{2 \times C:N}$

•
$$U_{Dt} = U_{den} + U_{het} = U_{NETt} - U_{At}$$

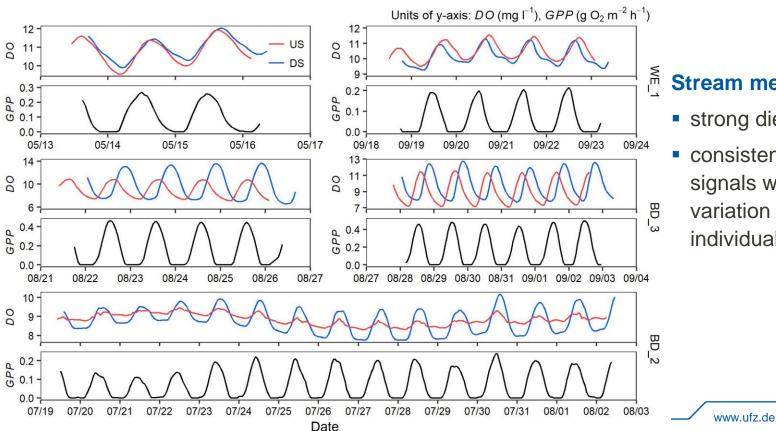
Results

Summary of high frequency measurements for all campaigns

Parameter	WE_1		WE_2		BD_1			BD_2	BD_3		
	2019-05	2019-09	2019-05	2019-09	2019-06	2020-08	2019-06	2020-08	2021-07	2019-08	2020-08
Q (m ³ s ⁻¹)	9.06±0.38	4.55±0.18	8.58±0.44	4.75±0.26	2.5±0.11	1.57±0.08	2.34±0.17	1.65±0.31	1.93±0.17	1.98±0.11	2.2±0.06
T (°C)	11.84±0.97	13.09±0.5	13.29±2.1	15.17±0.41	19.52±0.7	19.3±1.39	19.35±0.47	20.65±0.64	18.54±1.11	18.56±0.78	16.74±0.24
N (mg I ⁻¹)	3.84±0.05	3.85±0.13	3.62±0.11	3.51±0.05	1.76±0.03	1.23±0.05	1.65±0.05	1.22±0.08	1.73±0.09	1.23±0.06	1.01±0.06
DO (mg l ⁻¹)	10.86±0.54	10.33±0.3	10.84±0.82	9.99±0.73	8.68±0.45	8.59±0.37	8.77±0.35	8.16±0.37	8.82±0.41	9.32±1.18	9.45±0.54
Turb (FNU)	1.91±0.23	1.53±0.16	1.78±0.11	1.52±0.17	3.84±0.17	1.8±0.22	4.21±0.44	2.11±0.58	4.05±0.61	1.2±0.14	1.2±0.11
рН	8.13±0.08	8.44±0.05	8.26±0.1	8.65±0.06	8.25±0.07	7.97±0.04	8.23±0.05	7.88±0.05	8.01±0.05	8.15±0.11	8.03±0.06
SpCond (µS cm⁻¹)	850.5±52.5	1224.4±39.0	1051.9±32.1	1337.6±16.1	727.5±6.5	733.0±23.5	822.6±21.6	789.0±48.6	768.6±32.9	1094.1±12.5	1169.9±31.6
Chl-a (µg l⁻¹)	4.19±0.57	2.72±0.47	2.63±0.45	3.2±0.26	2.12±0.15	2.84±0.58	2.19±0.13	2.8±0.6	1.35±0.13	4.46±0.85	2.57±0.13
τ (h)	5	7	4.5	6	8	14	3.5	4.5	4	14	15.5
v (m s ⁻¹)	0.35	0.25	0.38	0.28	0.25	0.14	0.27	0.21	0.23	0.12	0.11

• Large differences between the individual campaigns

Results


Daily results of whole-stream metabolism and in-stream N uptake processes

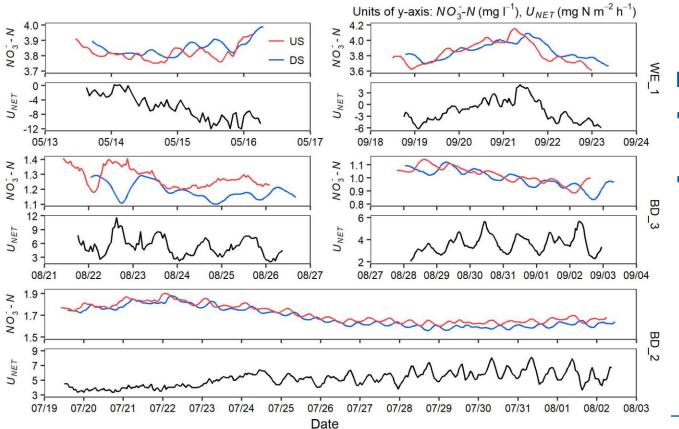
Process	Units	WE_1		WE_2		BD_1		BD_2			BD_3	
		2019-05	2019-09	2019-05	2019-09	2019-06	2020-08	2019-06	2020-08	2021-07	2019-08	2020-08
GPP	${\rm g}~{\rm O}_2{\rm m}^{-2}{\rm d}^{-1}$	2.7	1.7	2.8	2.2	0.8	0.7	1.6	1.1	1.8	4.1	4.6
ER	g O ₂ m ⁻² d ⁻¹	-1.6	-2.5	-1.2	-3.6	-3.3	-1.6	-3.7	-2.0	-2.5	-2.3	-3.2
U _{NET}	mg N m ⁻² d ⁻¹	-151.1	-30.5	319.6	33.7	-100.8	-61.2	357.8	53.6	130.9	133.7	86.8
U _A	mg N m ⁻² d ⁻¹	83.9	41.1	86.4	53.0	18.6	16.4	37.1	24.7	40.9	95.2	106.1
U _D	mg N m ⁻² d ⁻¹	-235.0	-71.5	233.2	-19.3	-119.4	-77.6	320.7	28.8	90.0	38.5	-19.3

Green indicates more natural morphological stream conditions Grey indicates modified morphological stream conditions

Measuring and Calculation

DO concentration and gross primary production (GPP)

Stream metabolism

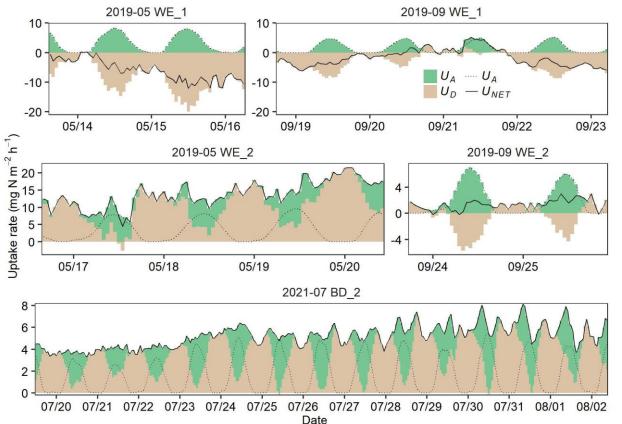

strong diel pattern of DO

10

consistent GPP diel signals with large variation between individual campaigns

Measuring and Calculation

Nitrate-N concentration and net uptake (U_{NET})


Nitrate uptake

www.ufz.de

- lack of diel pattern of NO₃⁻-N concentration
- U_{NET} varied strongly between reaches and between campaigns in the same reach

Results and discussion

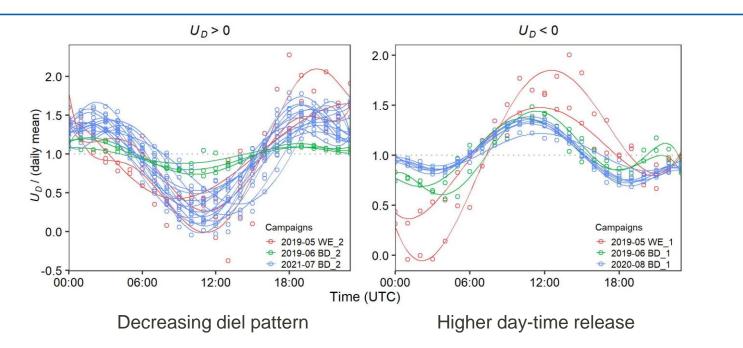
Variations in nitrate uptake pathways

Variations of U_{NET}

- highest (post wet) \rightarrow lowest (dry)
- Natural > Modified

For $U_{NET} > 0$

- Post-wet seasons, U_{NET} was dominated by U_D (abundant liable organic matters)
- Dry seasons, diurnal U_D shift between uptake and release


For $U_{NET} < 0$

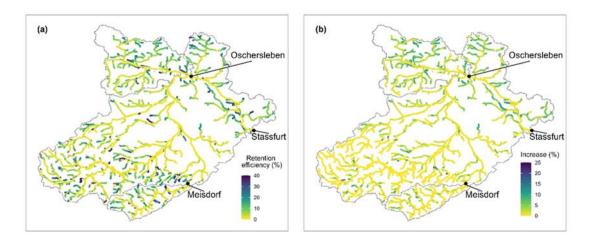
 post-wet seasons > during dry seasons

www.ufz.de

Results and discussion

Diel patterns of heterotrophic uptake (U_D)

The relative magnitude of diel variation was largely consistent within a campaign and similar across reaches and seasons.


Key points

- Two-station mass balance methodology can
 - Upscale nitrate uptake measurements in heterogenous high-order streams
 - Disentangle nitrate uptake pathways in systems with unstable upstream boundary
 - Explore their temporal dynamics
- Net nitrate uptake exhibits high variations seasonally and across reach conditions, with cases of consistent net release
- Heterotrophic nitrate uptake and release were higher during post-wet seasons and exhibited various diel patterns

Zhang, X., Yang, X., Hensley, R., Lorke, A. & Rode, M. (2023). Disentangling in-stream nitrate uptake pathways based on two-station high-frequency monitoring in high-order streams. Water Resources Research, 59(3), e2022WR032329. https://doi.org/10.1016/j.jhydrol.2020.125585

Outlook

- Studies such as these can provide pathway-specific quantification of heterotrophic uptake (U_D)
- Heterotrophic uptake (U_D) measurements are still rare at larger scale
- Results can help parameterization of stream network N uptake models

Summer NO₃⁻ retention efficiency increases from

- a) baseline to
- b) stream restauration scenario