

Microbial biofilms structure and manganese (bio)cycling: from lab to field studies

V. Rollot – IPGP (rollot@ipgp.fr), C. Dejean - UPC, F. Guyot – MNHN, J.M. Diaz – Scripps Inst., A. Gélabert – IPGP

Manganese is a central element in biogeosciences

(PM. H, D. L. Sparks et al., 1991) (Tebo et al, 2004)

(Butler et al, 2015) (Tebo et al, 2004)

Two ways to form manganese oxides in the environment

(Nealson, Tebo and Rosson, 1988)

Two ways to form manganese oxides biotically

(Tebo BM et al, 2005)

Two ways to form manganese oxides biotically

(Tebo BM et al, 2005)

(C. Hansel and J.M. Diaz, 2021) (Learman et al, ⁵2011)

Two ways to form manganese oxides biotically

(C. Hansel and J.M. Diaz, 2021) (Learman et al, ⁶2011)

Microorganisms release reactive oxygen species (ROS) (Diaz. et al., *Science*, 2013)

- \circ Transient
- Highly reactive species
- \circ +++ oxidizers
- Key but cryptic process

H	20 ₂	
O ₂ •-	HO .	

Microorganisms release reactive oxygen species (ROS) (Diaz. et al., *Science*, 2013)

o Transient

• Highly reactive species

Problematic

Microorganisms release reactive oxygen species (ROS) (Diaz. et al., *Science*, 2013)

Object

Role of microbial biofilms

Hypothesis

Biofilms accumulate ROS creating highly oxidizing pockets

(C. Hansel and J.M. Diaz, 2021) (Learman et al, 2011)

Laboratory experimental setup

*Biofilm

*Strain used *E. coli* K12 MG1655 F'tet

- Controlled system
- No Mn-oxidation related enzyme

Laboratory experimental setup

Mineral phase identification - TEM

Mineral phase identification - TEM

1 µm

Mineral phase identification - TEM

Minerals are related to a **BIRNESSITE** structure

Evidence of Mn oxidation in the biofilm

Oxidized Mn quantification – LBB dye

Oxidized Mn quantification – LBB dye

E. coli biofilms are able to oxidize Mn(II)!

Hypothesis

Biofilms accumulate ROS creating highly oxidizing pockets

Work in progress:

- CLSM imaging targeting ROS
- \circ Field sampling

Co autors: A. Gelabert,T. Berthe, G. Morin, Y. Colin, F. Petit

Microenvironments in natural biofilms (Seine river)

Take home message

- Biofilms seem to get specific redox microenvironments
- *E. coli* biofilms are able to oxidize Mn(II)
- Biological (and abiotic) ROS production in the critical zone needs further investigation -> Major role for redox-sensitive elements?

Thank you

François Guyot Bénédicte Menez Stephan Borensztajn Céline Pisapia Léna Lecourt Emmanuelle Gérard Jean-Marc Ghigo

