On previously unseen flowlines and their potential significance for understanding *c*-*Q* patterns in headwater streams

Nicolaus van Zweel¹

L. Gourdol¹, E. Zehe², L. Pfister¹, C. Hissler¹

¹CATchment and eco-hydrology research group – LIST ² Institute of Water and River Basin Management - KIT

Introduction

CZ: where paradigms intersect

Catchment Hydrology

Introduction

Towards integrated catchment hydro-biogeochemical theories

TERENC 25-28 Sept 2023,

<u>Aims and objectives</u> **Toward integrated catchment hydro-biogeochemical theories**

How much of this complexity could we observe?

Aims and objectives

1

2

Water chemistry will be stratified with depth due to vertical connectivity

Relative contribution of end members/mixture change as a function of hydrological state

Compile a sufficiently large dataset

Observe "unseen flowlines" or endmembers

<u>Methodology</u>

Methodology

25-28 Sept 2023, Bo

The Weierbach Experimental Catchment

6

The Weierbach Experimental Catchment

Structure of the regolith: a polygenetic system

Methodology

The databases: two time-scales

Long-term bi-weekly sampling

- 2009-20022 rain, throughfall, soil, GW, riparian, SW
- Standard water chemistry
- 2583 samples

Event-scale sampling

Results

End-member identification – bi-weekly DB

Vertical connectivity of biogeochemical processes

1. Hierarchical Cluster Analysis

2. Principal Component Analysis

<u>Results</u>

Near stream end-member identification – bi-weekly DB

Results

Near stream end-member identification – bi-weekly DB

Different c-Q power laws at catchment scale – bi-weekly DB

International Conference 25-28 Sept 2023, Bonn

Proposition for a cluster-based concept – bi-weekly DB

Results

Event time scale

Wrap up

- 1. Access to a large dataset that has SW and GW a new approach to an old problem could be applied
- HCA and PCA, hidden end members could be identified and studied
- Iook beyond near stream end members and identify potentially deeper end members

2. Are we observing end-members?

Cluster validation based on PHREEQC inverse modelling

3. And now....

- Quantify the water fluxes related to the observed clusters/flowlines
 - New consideration of the real weathering processes that contribute to stream/river chemistry

