

CT Atmosphere

HaPe Schmid

IMK-IFU Atmospheric Environmental Research, Karlsruhe Institute of Technology

Long-Term Objectives for Exosystem-Atmosphere Observations (Hypotheses):

- A shift from large-scale to more small-scale (convective) **precipitation pattern** will occur, and **alter the hydrological balances** in the catchment areas.
- Climate change induced vegetation and land-cover changes will modify energy and matter fluxes form the surface to the atmosphere and related feedbacks.
- Projected shifts towards a more soil-moisture-controlled evapotranspiration regime will lead to increased influence of land-atmosphere coupling effects on temperature and precipitation variability.
- Carbon storage potential and greenhouse gas emission in the study areas will substantially change with land management.
- Objectives to examine these hypotheses: very high goals!
- Can be assessed only after several years of observation and analysis
- meanwhile: do the measurements make sense?

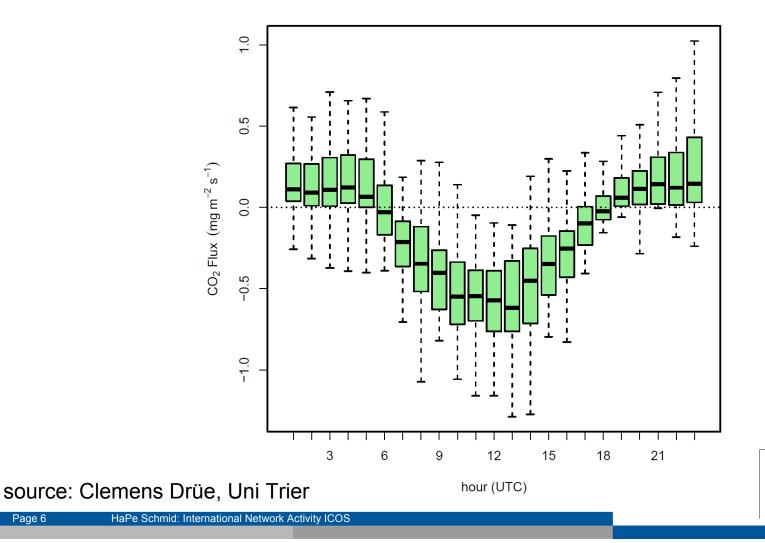
Meteorological parameters, instruments and methods for the different station types

Parameter	Instruments/Methods	Station type		
Standard climate station				
- Incoming short wave radiation	Pyranometer			
- Precipitation	Tipping-bucket gauges, present weather sensors	Oton double Manitoring Ototics		
- Air humidity		Standard Monitoring Station		
- Air temperature	MeteoMS Multisensor			
- Windspeed/ -direction				
Precipitation drop size distribution	Laser distrometer			
Isotopes in Precipitation	IRMS, WS-CRDS (automatic sampler, weekly probing)	Intensive Monitoring Station		
Sap flow	Granier			
Through fall	Tipping-bucket gauges			
Stem flow	Tipping-bucket gauges			
Eddy covariance (EC)-Station				
 Albedo / Radiation budget 	4 component net radiation sensors	SoilCan Station		
- Sensible and latent heat flux	Eddy covariance (EC) (H ₂ O, T, u, v, w, pressure)			
- Greenhouse gas fluxes	EC (CO ₂)			
- Soil heat flux	- Heat flux plates; - Soil temperature probes			
ICOS compatible EC-Station				
- Albedo / Radiation budget	4 component net radiation sensors			
- Spectral reflectance	Spectrometers (400 -1150 nm)			
- Photosynthetic active radiation (PAR)	Filter radiometers			
- Sensible and latent heat flux	- EC (H ₂ O, T, u, v, w, pressure)	ICOS Station		
	- Gradient method with 5 levels (H ₂ O, T)			
- Greenhouse gas fluxes	- EC (CH ₄ , N ₂ O, trace gases)			
	- Gradient method with 5 levels (CO ₂ , N ₂ O, CH ₄)			
Snow height	Snow height sensors			
Precipitation	Weather radar, rain scanner			
Regional GHG fluxes	Airborne GHG fluxes (Eco-Dimona)	Degional Manitang		
Area-averaged sensible heat flux	Large aperture scintillometer	Regional Monitoring		
Surface temperature map	Airborne hyperspectral sensors			

EC Station Wüstebach: First Results

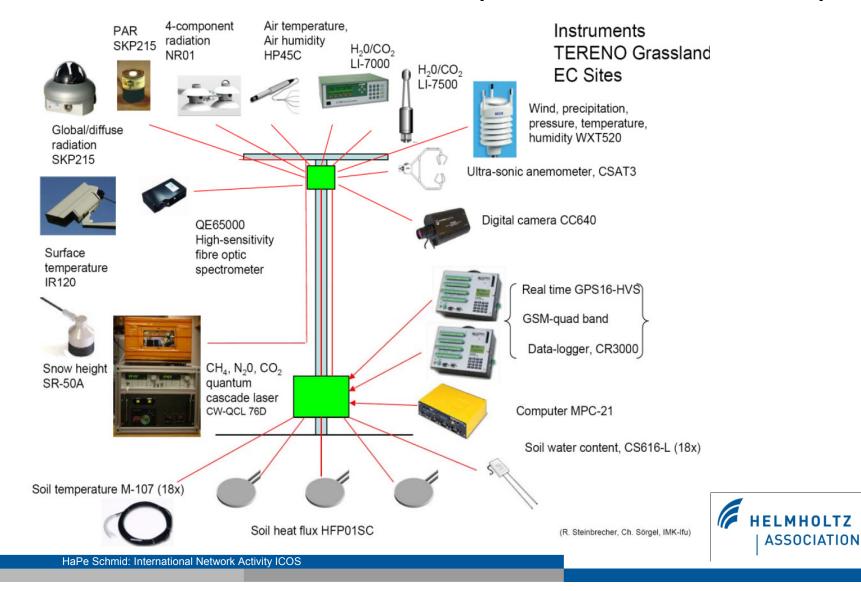
 Mean Daily Cycle of EC Fluxes of Latent & Sensible Heat (over July-Sept. 2010)

Page 6

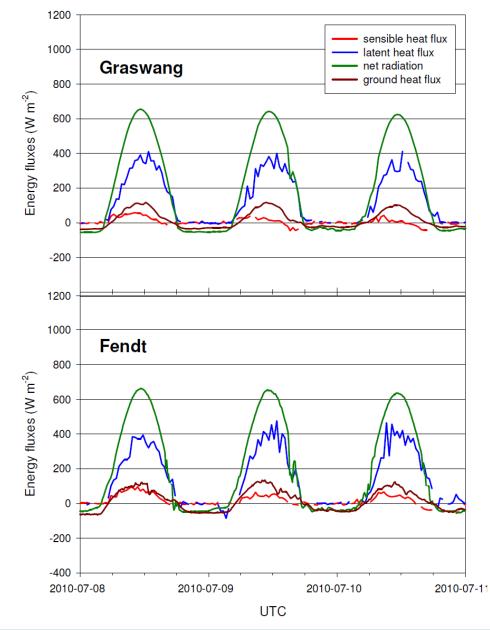


ELMHOLTZ

ASSOCIATION


EC Station Wüstebach: First Results

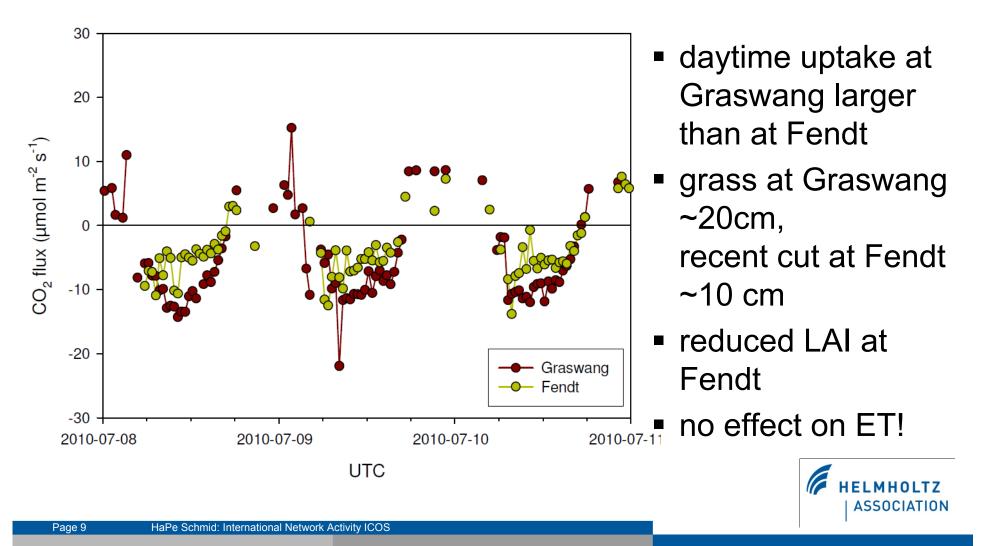
Mean Daily Cycle of CO₂ Flux (over July-Sept. 2010) •


TERENO EC-Station (Instrumentation)

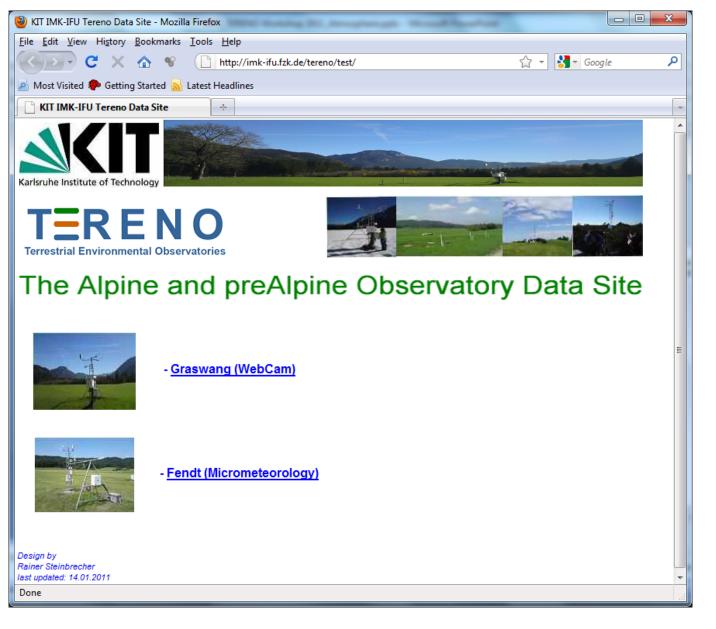
Page 7

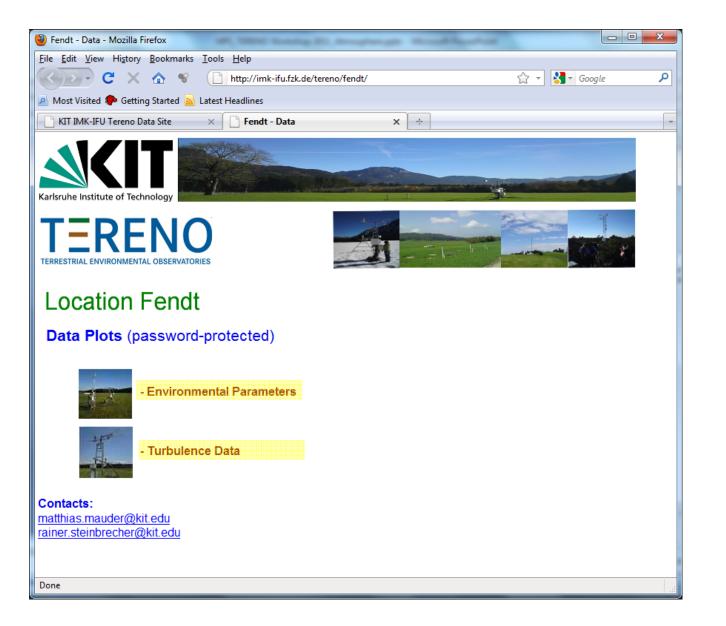
Surface Energy Exchange July 8-10, 2010 at •Graswang (865 m)

•Fendt (600 m)

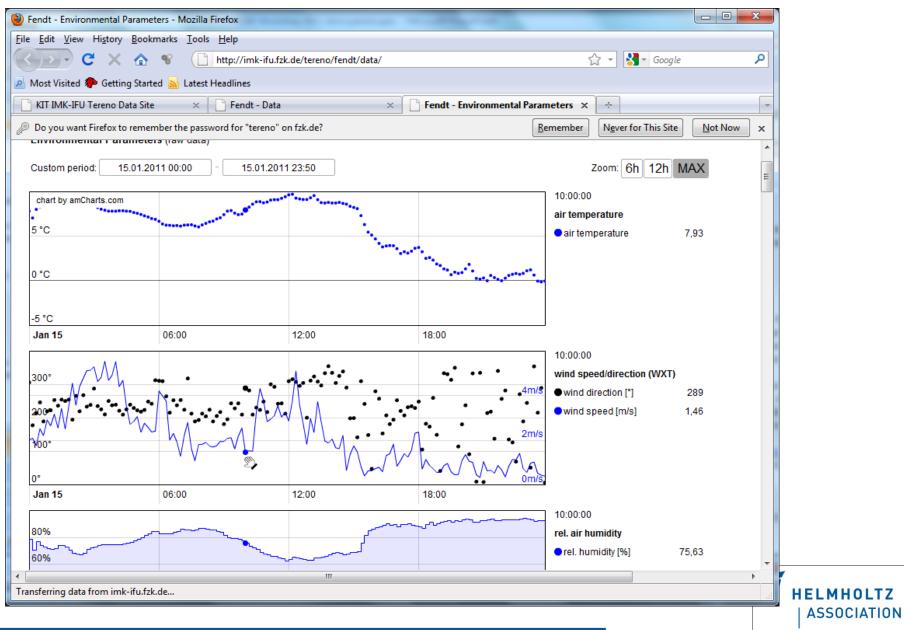

- both sites grassland
- net radiation similar (cloud free)
- flux magnitudes and partitioning similar

CO₂ Fluxes, July 8-10, 2010 at Graswang (865 m) and Fendt (600 m)




HELMHOLTZ

ASSOCIATION



HELMHOLTZ ASSOCIATION

<u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> o	okmarks <u>T</u> ools <u>H</u> elp			
💽 - C 🗙 🙆	🕈 😵 📋 http://imk-ifu	.fzk.de/tereno/fendt/data/schnel	l/schnell.html	☆ 🚽 🚼 - Google
Most Visited 🌮 Getting Sta	arted <u> </u> Latest Headlines			
KIT IMK-IFU Tereno Data S	ite 🛛 🗙 📄 Fendt - Da	ta ×	Fendt - Turbulence Data	× ÷
Custom period:	15.01.2011 01:00	- 16.01.2011 00:0	00	Zoom: 6h 12h MAX
chart by amCharts.com				11:30
600 W/m²				sensible heat flux
400 W/m²				●HTs 16,5867805
200 W/m²				
0 W/m²		• • • • • • • • • • • • • • • • • • • •		
-200 W/m²				
	06:00	12:00	18:00	
				11:30
600 W/m²				latent heat flux
400 W/m²				●LvE 100,430481
200 W/m²				
0 W/m²	•	<u></u>		
-200 W/m²				•••••
	06:00	12:00	18:00	
				11:30
0,02 mmol/(m²s)				CO2 flux
•	•.			CO2 flux -0,0020724
0 mmol/(m²s) 🔹 👞	• •		••••	-•••-
			•	

Page 13 HaPe Schmid: International Network Activity ICOS

Short Course: Flux Measurement Fundamentals

April 11-15, 2011

A technical short course in the use of micrometeorological methods to obtain and analyze fluxes of momentum, heat by eddy-covariance and related techniques.

Instructors: HaPe Schmid, Matthias Mauder, Rainer Steinbrecher (Karlsruhe Institute of Technology (KIT), IMK-IFU, Garmisch-Partenkirchen)

Location: KIT/IMK-IFU, Garmisch-Partenkirchen

Important note:

Limited funding to cover the costs of accommodation and travel for Master- and Doctoral-Students is available. There is no participation fee.

2011 Flux Course Programme

Monday, April 11 09:00 AM	Welcome and orientation; Introduction to turbulent exchange measurements	Schmid	
01:00 PM	Install instrumentation	Schmid, Mauder, Steinbrecher	
Tuesday, April 12 08:30 AM	Download data and check system; preview data	Schmid, Mauder, Steinbrecher	
09:00 AM	Boundary layer and turbulence theory; Programming basics	Schmid	
01:00 PM	Calculations of turbulence statistics	Schmid	
Wednesday, April 13 08:30 AM	Download data and check system; preview data	Group, Mauder	
09:00 AM	QA/QC	Schmid, Mauder	
01:00 PM	Gap-filing: issues and techniques	Schmid, Mauder	
evening	Download data and check system; preview data	Group, Steinbrecher	
Thursday, April 14 09:00 AM	Post-processing automation for long-term measurements	Mauder	
01:00 PM	Calculation of fluxes incl. corrections and quality tests using TK2	Mauder	
evening	Download data and check system; preview data; bring down instrumentation	Group, Mauder	
Friday, April 15 09:00 AM	Analyze data	Schmid, Mauder, Steinbrecher	
01:00 PM	Interpret, present and discuss data	Schmid, Mauder, Steinbrecher	HELMHOLTZ
03:00 PM	Departure		