

In-Situ soil moisture and its relation to remotely sensed retrievals

Heye Bogena, Carsten Montzka and Harry Vereecken

Soil moisture

Soil moisture is:

- A key variable in the global water cycle
- Controlling the exchange of water and energy between land and atmosphere
- Highly variable in space and time
- However still not routinely measured (e.g. DWD)

Global Change Effects

The water cycle exhibits many changes as the earth warms. Wet and dry areas respond differently.

Available measurement techniques

Soil moisture remote sensing

Satellites (e.g. SMOS)

 \Rightarrow continuous monitoring

Radiometer and Sensor Networks (SoilNet) \Rightarrow long-term continuous monitoring

PLMR Rur Campaign 2008

Page 5

The Rur catchment and its test sites

- Eddy Correlation station
- Soil moisture sensor network
- Soil temperature measurements
- Soil CO₂ flux measurements

Forest test site "Wüstebach"

- Eddy Correlation station
- Soil moisture sensor network
- Soil temperature measurements
- Groundwater monitoring
- Runoff and solute monitoring
- Soil CO₂ Flux measurements

X-band Doppler Weather Radar

Agricultural test site "Selhausen"

- Eddy Correlation station
- Soil moisture measurements
- Soil temperature measurements
- Soil CO₂ flux measurements
- Ground-based remote sensing
- LIDAR

SoilNet instrumentation at the TERENO research station Wüstebach

Soil moisture pattern between August and November 2009

Relationship between mean soil water content and its standard deviation in 5 cm depth

Event dependent hysteretic behaviour

Cosmic Ray Probes

- Cosmic rays lead to emission of neutrons by soil nuclei in the top soil.
- CR Neutrons lose energy primarily through collisions with hydrogen
- Continuous measurement of neutron flux to estimate soil moisture at hourly resolution
- Large Footprint (about 350 m radius)

Cosmic ray probe in the field of Rollesbroich (Map2011) ASSOCIATION

Cosmic Ray monitoring network in the Rur Catchment

ASSOCIATION

Calibration results: Grassland test site Rollesbroich

83 soil moisture stations (5, 20 and 50 cm)

300 m radius

Calibration results: Forest test site Wüstebach

RMSE (calibration period): 2.93 Vol.%

RMSE (remaining period) 9.47 Vol.%

Passive and active microwave sensors the 2011 campaign

F-SAR

F-SAR overlayed with unprocessed PLMR data

Multi-resolution TB for the Rur catchment

Elevation 700 m

Multi-resolution TB for the Rur catchment

Elevation 700 m

PLMR brightness temperature vs. surface soil moisture

Test site: Grossbardau (TERENO Central German Lowland Observatory)

→ Spatial distribution of vegetation parameters from AISA data!

PLMR brightness temperature vs. LAI

winter barley (fruit development)

Test site: Grossbardau (TERENO Central German Lowland Observatory)

Application of multi-variate regression

SMAP validation campaign with simultaneous use of passive and active microwave sensors

Combination of PLMR2 and DLR F-SAR onboard a Dornier DO228 aircraft

+ IR-camera+ Hyperspectral camera

- F-SAR is able to operate in 4 frequency bands (X, C, L and P)
- Dual (F-SAR) channel operation

- Polarisation: Dual linear (V and H)
- Incidence angles: +/- 8°, +/-22°, +/- 38°
 @ pushbroom

PhD study of Sayeh Hasan: Airborne active and passive microwave data fusion for soil moisture retrieval (DFG)

F-SAR overlayed with unprocessed PLMR data

Data assimilation techniques to predict hydrological fluxes from soil moisture measurements

Optimal combination of observations and model predictions e.g. Ensemble Kalman Filter, Particle Filter

Particle Filter: Sequential Monte Carlo

Sequence:

HYDRUS 1D lysimeter experiment

 1-D physical finite elements model solves Richards equation numerically:

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left[k \left(h \right) \left(\frac{\partial h}{\partial z} - 1 \right) \right] - Q$$

- Soil hydraulic properties are parameterised using the Mualem-van Genuchten model
- 1 day temporal resolution
- 3 soil layers

Assumptions:

- Vapour flow is negligible
- No macropore flow
- No hysteresis

HELMHOLTZ

Particle Filtering – Soil water content

Soil moisture observations

State and param. update (loamy sand)

Conclusions

- Wireless sensor networks can be used to analyse soil moisture variability at the headwater catchment scale
- Wireless sensor network data can be used to analyze Cosmic Ray probe foot print measurements
- Airborne passive radiometer data has to be combined with additional data (e.g. LAI) to increase the quality of soil moisture retrieval
- A active/passive retrieval algorithm helps to increase spatial resolution of radiometer soil moisture data
- Data assimilation methods provide a unique means of combining soil moisture measurements and models to predict soil water fluxes

Prediction of hydrological states and fluxes

Real-time monitoring

