GPR in Hydrology

Kurt Roth, Xicai Pan, Jens Buchner

Institute of Environmental Physics Heidelberg University

kurt.roth@iup.uni-heidelberg.de

Soil: Earth's multi-scale skin

QuickBird, Toledo, Spain, 2 February, 2002, Pan-sharpened

1 km catchment hydrology

> soil physics 1 m

relevant structures at all scales

different generators at different scales

no simple transition between scales

chemistry & 1 mm

Soil: Earth's multi-scale skin

Soil: Earth's multi-scale skin

guired

1 m

2 February, 2002, Pan-sharpene

OuickBird Toledo, Spain.

1 km

and a state of the state of the

focus today

- physically-based understanding of water movement through soils
- soils with little vegetation
- spatial scale 1 m...1 km

Physically-based model

 $\mathbf{j} = -\mathsf{K}[\nabla \psi_m - \rho \mathbf{g}]$

- conservation of mass
- incompressible media
- Buckingham's conjecture

 $\partial_t \theta + \nabla \cdot \mathbf{j} = 0$

 $\theta(\psi_m), \ \mathsf{K}(\theta)$

soil hydraulic

properties

Richards equation

 $\partial_t \theta - \nabla \cdot \left[\mathsf{K}(\theta) [\nabla \psi_m - \rho_w \mathbf{g}] \right] = 0$

$$\begin{bmatrix} -10^{3} \\ H \\ -10^{2} \\ H \\ -10^{1} \\ -10^{2} \\ -10^{-1} \\ -10^{-2} \\ 0 \\ 0.2 \\ 0.4 \\ water content \theta \end{bmatrix} \xrightarrow{\mathsf{r}_{g}} 10^{-5} \\ H \\ 10^{-7} \\ 10^{-7} \\ 0 \\ 0.2 \\ 0.4 \\ 0 \\ 0.2 \\ 0.4 \\ water content \theta \\ water content \\ wa$$

Physically-based model

$\theta(\psi_m), \ \mathsf{K}(\theta)$ $\partial_t \theta + \nabla \cdot \mathbf{j} = 0$ $\partial_t \theta - \nabla \cdot \left[\mathsf{K}(\theta) [\nabla \psi_m - \rho_w \mathbf{g}] \right] = 0$ $\mathbf{j} = -\mathsf{K}[\nabla \psi_m - \rho \mathbf{g}]$ $j_w^0 = 1.16 \cdot 10^{-8} \text{ m s}^{-1} (3.06 \text{ mm d}^{-1})$ soil architecture -0.0matric head [m] x [m]3 -0.20sand <u>E</u>1 8 silt

Physically-based model

that's gonna a be a long long road...

...but there are options

remote sensing

- passive radiometry
- active radar
- gravimetry,...

geophysical methods

- GPR, ERT, EMI
- NMR, SIP,...
- n-, Ra-emission,...

sensor networks

- individual, profile
- 2d spread, quasi 3d

assessment space

- quantity (measured vs wanted, applicability)
- accuracy (proxy relation)
- extent, coverage, resolution in space and in time
- installation & operation resources

but, nowhere near 10¹⁰ points!

... but there are options

remote sensingpassive radiometry

- active radar
- gravimetry,...

focus on GPR specifically on GPR reflections (neglecting air-groundwave)

geophysical methods GPR, ERT, EMI NMR, SIP,... n-, Ra-emission,...

sensor networks
individual, profile
2d spread, quasi 3d

extent, coverage, resolution in space
extent, coverage, resolution in time
installation & operation ressources

but, nowhere near 10¹⁰ points!

Outline

fundamentals

major findings

- GPR yields information on •reflector topography d(xh;t) •liquid water content $\Theta(x;t)$
- single-channel GPR traditional analysis useless
 for soils
- multi-channel GPR powerful extension for traditional analysis
- constructive inversion the way to go for complicated architectures

GPR fundamentals

speed of light

$$c = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}}$$

reflection coefficient $1 \rightarrow 2 \ (\mu_r = 1)$

$$o := \frac{A_{\rm in}}{A_{\rm refl}} = \frac{\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}}$$

composite dielectric number

$$\varepsilon_c^{\alpha} = \sum_i \theta_i \varepsilon_i^{\alpha}(T, \nu, \dots)$$

 $\alpha = 1/2$: CRIM

dielectric numbers of soil constituents

liquid water	80.4 (at 20° C and 1 GHz)
pure ice	3.2
quartz	4.3

GPR fundamentals

Single-channel GPR

single channel common-offset measurement

t

$$= \frac{\ell}{v}$$
$$= \frac{\sqrt{\varepsilon_c(\theta)}}{c_0}\sqrt{4d^2 + a^2}$$

Single-channel GPR

Single-channel GPR

Multi-channel GPR

Multi-channel GPR: typical setup

Application: Huang-Huai-Hai Plain, China [exploratory study by Pan Xicai, 2011]

HHH Plain: subsurface architecture

P1

Heidelberg University Institute of Environmental Physics

P2

24

HHH Plain: assessment of accuracy

HHH Plain: soil hydrology

HHH Plain: soil hydrology

soil water content

amount of water

HHH Plain: soil hydrology

Institute of Environmental Physics

Constructive inversion:

rough concept

[PhD project of Jens Buchner, 2012]

29

construct parametric representation
 of subsurface architecture
 from traditional single-/multi-channel scan

©simulate GPR measurement numerically

•identify prominent features in measured & simulated radargrams

•adjust architecture parameters for optimal agreement

ASSESS-GPR site

Parametric architecture model

•construct parametric representation of subsurface architecture from traditional single-/multi-channel scan

Identification of features and pairing

•adjust architecture parameters for optimal agreement

Assessment of accuracy

Assessment of accuracy

Assessment of accuracy

need to simulate with very high resolution in order to represent all relevant phenomena

probably (hopefully) need not
 explicitly parameterize
 observe
 with that resolution

there's light!

