

Coordination Team (CT) Biosphere

Mark Frenzel, Cornelia Baessler, Mathias Scholz & Stefan Klotz

TERENO-Workshop Potsdam 24.-25. January 2012

Helmholtz Centre for Environmental Research - UFZ Dept. Community Ecology

Harz/Central German Lowland Observatory

- Core sites with (historical) data held by UFZ
- Core sites established in 2009

Issues of CT Biosphere

SWOT-Analysis

- Strengths: characteristics of business / project team
- Weaknesses (or Limitations): characteristics placing the team at a disadvantage relative to others
- Opportunities: external chances to improve performance
- Threats: external elements that could cause trouble for business / project

Origin	Helpful	Harmful
Internal (attribute of organization)	Strengths	Weaknesses
External (attribute of environment)	Opportunities	Threats

Source: Wikipedia

* Hypothesis-driven

CT Biosphere Hypotheses

•Climate and land use change influence...

- 1. ... **local adaptation** => depends on genetic variation
- 2. ... **population genetics** of plants => microevolutionary processes
- 3. ... areal shifts of species => changes in existing communities
- 4. ... ecological communities => consequences for ecosystem functions and services (productivity, erosion control, pollination)
- 5. ...the adaptability of selected ecosystems in the long-term

Ш

CAL

ഗ

Strengths (helpful, internal)

- Hypothesis-driven
- Bioindication: organism-based integrative indication (reaction or accumulation) of diverse (anthropogenic) impacts on / characteristics of ecosystems

Bioindication: community similarity

Responses of community similarity in seven different communities to

- land-use intensity (pesticide index)
- landscape structure (splitting index of herbaceous vegetation)

Dormann et al. (Global Ecol Biogeogr; 2007)

Bioindication: community similarity

Response of bird and bee community similarity to landscape configuration

Dormann et al. (Global Ecol Biogeogr; 2007)

Strengths (helpful, internal)

- Hypothesis-driven
- Bioindication: organism-based integrative indication (reaction or accumulation) of diverse (anthropogenic) impacts on / characteristics of ecosystems
- ✤ Indispensible ⇒ Important indicator groups (what happens to the biotic part of ecosystems?)
 - Vascular plants => Primary producers (overall biodiversity indicators)
 - Bees & Hoverflies => Important pollinators (ecosystem service agents) (TMD – Tagfalter Monitoring)
 - Butterflies => Indicators for habitat quality, pollinators
 - Birds => Highly mobile, sensitive to landscape context, integrative on landscape scale

Weaknesses (harmful, internal)

- Small team (UFZ staff only): biodiversity related research within TERENO ⇒ main focus at UFZ
 - Harz/Central German Lowland Observatory (6 sites à 4x4km, 6 floodplain sites)
 - SoilCan sites (4 + replications)
- Selected species groups (organism groups, frequency)
- Low frequency data (e.g. bird surveys each third year)
- Labor-intensive observations (traps, field surveys)
- Not device-based (no automated measurements possible)
- Extra budget for external assistance (specialists for specific groups)
- Integration with abiotic measurements can still be improved

Opportunities (helpful, external)

Well-embedded in European initiatives (biotic and abiotic issues as well):

* NETWORKS

- LTER-Europe (Long-Term Ecosystem Research and Monitoring): Expert Panel Standardization & Technology
- LTER-D (German network)
- PROJECTS: WP's related to standardization of parameters and methods based on ecological integrity concept
 - EnvEurope (Life+; 2010-13): Environmental quality and pressures assessment across Europe: the LTER network as an integrated and shared system for ecosystem monitoring
 - **Expeer** (FP7; 2010-14): Experimentation in Ecosystem Research
 - **DBU Nature heritage sites**: Monitoring concept

Threats (harmful, external)

- Biodiversity measurements: Basic measurements comparable in international context, but others (e.g. ECN – Environmental Change Network UK) have resources to do more
- All our efforts may be (suddenly) overridden by unexpected climate change effects (see worst scenarios of CO₂ increase of the past have already become true...)

Proposals for improvement

Within **TERENO**

- Enhancing interdisciplinary links
 - Joint workshops
 - Tuning of measurement campaigns (see SoilCan)
- ✤ ... and of course some more

Relationships between plant functional types and ecosystem properties/ecosystem services

- Historical data: landscape structure, land use & vegetation data (1970, 2003, 2010)
- Collection of species frequency data at permanent plots since
 2010 – biennial (annually)

- Historical data: landscape structure, land use & vegetation data (1970, 2003, 2010)
- Collection of species frequency data at permanent plots since 2010 – biennial (annually)

Analyses of multidimensional functional diversity indices (FD) and community weighted mean trait values (CWM) using plant functional traits

.....

Relationships between plant functional types and ecosystem properties/ecosystem services

Multidimensional functional diversity (FD)

- Analysis of functional diversity indices using different biological and ecological trait values, taking the frequency of each species into account
- Changes in functional diversity across time

(ANOVA, Tukey HSD with Bonferroni correction)

Relationships between plant functional types and ecosystem properties/ecosystem services Community Weighted Mean trait values (CWM)

Vielen Dank!

Thank you very much!

Landscape structure (Core site Friedeburg)

Period	Nitrogen (N; kg/ha)	Phosphorus (P ₂ O ₅ ; kg/ha)
1950s	35	31
1970s	124	61
2000	178	32

Period	Shannon Diversity	Share semi- natural habitats	PROX whole landscape (*10 ³)	Mean size arable fields (ha)
1950s	0.97	36.1	1.6	1.6
1970s	0.85	29.8	3.4	8.1
2000	0.77	25.8	4.8	10.5

Baessler & Klotz 2006

Vegetation analyses: arable weeds species richness (3 core sites)

WAN

FB

GH

Dates of relevés: 50ties, 70ties, 2000

- High habitat diversity => high species richness
- High nitrogen application => low species richness

Baessler 2008

Concepts I: DPSIR

STATE of Ecosystems

IMPACT Decline (or improvement)

Connection Ecol. Integrity - Ecosystem Services

ECOLOGICAL INTEGRITY

E S	Biotic Diversity	fauna diversity		
	Interactions	habitat structure		
		additional variables		
ふさ			soil heterogeneity	
SC D		water heterogeneity		
S E	Abiotic Heterogeneity		air heterogeneity	
m w			habitat heterogeneity	
		additional variables		
stem Process	Energy Budget	input	exergy capture	
		storage	exergy storage	
		output	entropy production	
		additional state variables	meteorology	
		efficiency measures	metabolic efficiency	
	Matter Budget	input	matter input	
		storage	matter storage	
		output	matter loss	
		additional state variables	element concentrations	
		efficiency measures	nutrient cycling	
		input	water input	
COS		storage	water storage	
	Water Budget	output	water output	
	Page 29	additional state variables	element concentrations	