Remote sensing of soil properties and soil patterns: Current research and perspectives

Sabine Chabrillat, Daniel Spengler, Gerald Blasch, Saskia Förster, Claudia Georgi, Sibylle Itzerott

chabri@gfz-potsdam.de

GFZ German Research Center for Geosciences Section 1.4: Remote Sensing Potsdam, Germany

Introduction

Quo Vadis imaging spectroscopy

- Reflectance spectroscopy à Reflectance spectroscopy is the study of light as a function of wavelength that has been reflected or scattered from a solid, liquid, or gas in the optical domain
- Absorption bands due to electronic, vibrational or rotational energy transitions in atoms and molecules that characterize material

Water molecule: 3 fundamental modes of vibration

 Imaging spectroscopy à Study of solar electromagnetic radiation reflected by Earth materials in the spatial domain

Airborne or spaceborne Imaging Spectroscopy (IS)

Also named: Hyperspectral Remote Sensing (HRS)

Comparison multispectral - hyperspectral

GFZ

From absorption bands to material identification & quantification

Absorption bands **à** spectral features in the spectrum of reflected radiation

ASSOCIATION

Helmholtz Centre

Soil spectroscopy

Absorption features in the reflectance spectrum due to mineral and water constituents can be exploited to map soil conditions

Soil attribute	Spectral	Spectral	Multiv	variate n_{calib} R	$MSE R^2 A$	uthors						
	region	range (nm)	metho	Soil attribute	Spectral	Spectral	Multivariate	ncalib	RMSE	R ²	Authors	
	region	range (nm)	meth		region	range (nm)	method ^a	n _{valid}				
Acid (exch.); cmol/kg	VIS-NIR	400-2498	PCR	Ma: a/ka	VIS_NIR	400-2500	modified PLSR	315		0.90	Cozzolino and Moron (2003)	
Al (exch.); cmol/kg	MIR	2500-25,00	0 PLSI	Mg, g/kg	VIC NID	250 2500	MADO	4021246		0.90	Cozzonio and Wolch (2003)	
Biomass (N); mg/kg	NIR	1100-2300	PLSE	Mg (exch.); cmol(+)/kg	VIS-NIK	550-2500	MARS	495 240	11	0.81	Shepherd and waish (2002)	
Biomass (N); mg/kg	MIR	2500-2500	0 PLSI	Mg (exch.); mg/kg	VIS-NIR	400-2498	PCR (9)	30 119	12.8	0.68	Chang et al. (2001)	
Biomass' mgAg	VIS-NIR	400-2498	PCR	Mg; mmol(+)/kg	UV-VIS-NIR	250-2500	PCR	121 40		0.63	Islam et al. (2003)	
C (inorg.); g/kg	MIR	2500-25.00	0 PLSI	Mn (DTPA); mg/kg	MIR	2500-25,000	PLSR	183		0.57	Janik et al. (1998)	
C (inorg.) g/kg	NIR	1100-2498	PLSE	Mn (exch); cmol/kg	MIR	2500-25 000	PLSR	183		0.66	Janik et al. (1998)	
C (inorg.); g/kg	VIŠ-NIR	400-2498	PLSE	Mr. (Mahlish III), maha	MIC NID	400 2409	DCD (12)	201110		0.00	Change at al. (2001)	
C (total); g/kg	MIR	2500-25,00	0 PLSE	Min (Mennich III); mg/kg	VIS-NIK	400-2498	PCR (12)	30/119	50.4	0.70	Chang et al. (2001)	
C (total); g/kg	NIR	1100-2498	PLSE	OC; %	MIR	2500-20,000	PLSR			0.92	Janik and Skjemstad (1995)	
C (total); g/kg	NIR	1100-2498	PLSF	OC; %	MIR	2500-25,000	PLSR	188		0.93	Janik et al. (1998)	
C (total); g/kg	VIS-NIR	400-2498	PLSE	OC: g/kg	MIR	2500-25.000	PLSR (17)	177160		0.94	McCarty et al. (2002)	
C (10tal); g/kg	UV_VIS_N	400-2498 IR 250-2450	PLSE	OC: (asidified coil) aka	MID	2500 25,000	DI SD (10)	177 60		0.07	McCarty et al. (2002)	
C:N ratio	VIS-NIR	400-2498	PLSE	OC, (actumed son) g/kg	NIR	2500-25,000	FLSR (19)	17/100		0.97	Databased Harry (1000)	
CEC; cmol(+)/kg	MIR	2500-25,00	0 PLSE	0C; %	NIK	1100-2500	MLR (1/44,	72 48		0.93	Data and Henry (1986)	
CEC; cmol(+)/kg	NIR	1000-2500	MRA				1870, 2052)					
CEC; mmol(+)/kg	NIR	700-2500	PCR	OC; %	NIR	1100-2500	RBFN	140 60	0.32	0.96	Fidêncio et al. (2002)	
CEC; cmol(+)/kg	VIŠ-NIR	400-2498	PCR	OC: %	NIR	700-2500	PCR	121 40		0.68	Islam et al. (2003)	
CEC; cmol(+)/kg	VIS-NIR	350-2500	MAF	OC: a/ka	NIP	1100-2498	PI SP (18)	177160		0.82	McCarty et al. (2002)	
CEC; mmol(+)/kg	UV-VIS-N	IR 250-2500	PCR DIST	OC, grkg	NID	1100-2498	DICD (9)	190		0.02	Beering and McCarter (2001)	
Car amolka	MIR	2500-20,00	O PIST	OC; mg/kg	NIK	1100-2500	PLSK (8)	180 x-vai		0.94	Reeves and McCarty (2001)	
Ca: mmol(+)/kg	NIR	700-2500	PCR	OC (acidified soil); g/kg	NIR	1100-2498	PLSR (17)	177 60		0.80	McCarty et al. (2002)	
Ca; g/kg	VIS-NIR	400-2500	modi	OC; g/kg	VIS-NIR	400-2498	PLSR (6)	76 32	0.62	0.89	Chang and Laird (2002)	
Ca (exch.); cmol(+)/kg	VIS-NIR	350-2500	MAF	OC; g/kg	VIS-NIR	350-2500	MARS	449 225	0.31	0.80	Shepherd and Walsh (2002)	
Ca (exch.); cmol(+)/kg	VIS-NIR	400-2498	PCR	OC: dag/kg	VIS-NIR	350-1050	PLSR (5)	43125	036		Viscarra Rossel et al. (2003)	
Ca; mmol(+)/kg	UV-VIS-N	IR 250-2500	PCR	00: %	IN VIS NID	250-2500	PCP	121140	0.50	0.76	Islam at al. (2003)	
Carbonate; %	MIR	2500-20,00	0 PLSI	00, 78	07-715-1410	230-2300	PUR (A	121 40		0.70	Islam et al. (2005)	
Carbonate; %	NIR	1000-2500	MRA	OM; %	MIR	2500-25,000	PLSR (4)	31 x-val	0.72	0.98	Masserschmidt et al. (1999)	
			, uand	OM; %	NIR	1000-2500	MRA (30 bands)	39 52		0.55	Ben–Dor and Banin (1995)	
EC; mS/cm	UV-VIS-NIR MIR	250-2500 F	CR	OM; %	VIS-NIR	400-1100	NN	41		0.86	Daniel et al. (2003)	
Fe (free); %	NIR	700-2500 F	CR	OM: %	VIS-NIR	400-2400	SMLR (606.	15 10		0.65	Shibusawa et al. (2001)	
Fe; mg/kg	VIŠ-NIR	400-2500 n	nodified	0, /0	no ma		1211 1228)			0.00	billoubund et un (2001)	
Fe (Mehlich III); mg/kg	VIS-NIR	400-2498 F	CR (9)				1511, 1256)	100			T 11 . 1 (1000)	
Fe (free); %	UV-VIS-NIR	250-2500 F	'CR	P (avail.); mg/kg	MIR	2500-25,000	PLSR	186		0.07	Janik et al. (1998)	
K: mmol(+)/kg	UV-VIS-NIR	250-2500 F	CR	P (avail.); mg/kg	VIS-NIR	400-1100	NN	41		0.81	Daniel et al. (2003)	
K (exch.); mg/kg	MIR	2500-25,000 F	LSR	pH	MIR	2500-20,000	PLSR			0.72	Janik and Skjemstad (1995)	
K (avail.); mg/kg	VIS-NIR	400-1100 P	NN .	pH	NIR	1100-2300	PLSR (8)	180 x-val		0.74	Reeves and McCarty (2001)	
K (exch.); cmol/kg	VIS-NIR	400-2498 F	CR (13)	nH	NIR	1100-2498	PLSR (11)	120159		0.73	Reeves et al (1999)	
LR; t/ha	NIR	2300-25,000 F 700-2500 F	LSR	pit	MC ND	250 2500		5051050	0.42	0.75	Charland and Will (2002)	
Mg (exch.); cmol/kg	MIR	2500-25,000 H	LSR	рн	VIS-NIR	350-2500	MARS	505 253	0.43	0.70	Shepherd and Walsh (2002)	
Mg; mmol(+)/kg	NIR	700-2500 F	CR	pH _{Ca}	MIR	2500-25,000	PLSR	183		0.67	Janik et al. (1998)	

R.A. Viscarra Rossel et al. / Geoderma 131 (2006) 59-75

Field spectroscopy with portable instruments

ELMHOLTZ

Soil profile mapping

Soil profile classification using an optical head device

BenDor et al., 2008, SSSAJ

Fig. 2. (a) A sketch describing all parts of the in-soil 35.HeD probe and the connection betwee inner fore-optics. (b) Also given is a schematic configuration of a dark chamber showing measured for the spectral optimization and reading.

Direct Soil Profile Spectral Mapping

Soil spectroscopy from the field to airborne platforms

ASSOCIATION

Helmholtz Centre

Soil water content

POTSDAN

 Development of a new approach for surface soil moisture estimation: The Normalised Soil Moisture Index (NSMI)

HyMap image and related surface soil water map

BMBF/GFZ-Potsdam Quantification of near-surface processes

Soil water content

- Soil moisture quantification of vegetated areas in agriculture
- **v** Enables determination of soil moisture up to vegetation cover of about 70%

GFZ

felmboltz Centre

POTSDAM

Prediction model of surface soil moisture (Vol %) integrating artificial 3D canopy models

Spengler et al., 2013

NSMI method

23.09.2010 - AISA

ZIM – MoLaWa, Helmholtz Alliance – Remote Sensing and Earth System Dynamics

ELMHOLTZ ASSOCIATION

90

 $R^2 = 0.61$

90

Enhanced soil parameters determination

GFZ

ielmholtz Centre

POTSDAM

- Quantification of free iron surface content using spectral modeling techniques
- Soil iron content map Fe_d % Support for identification of degraded areas y = 0.836 * x + 0.317 $r^2 = 0.755$ Fe,=1.5% RMS = 0.182 depth (offset for clarity) Fe,=3.4% edicted Fe. Reflectance 2+/3-2.5 - 3.0 < 0.5 Cabo de Gata 5-10 > 3.0 Natural Park, Spain 0.5 1.0 µm 0-15 no Fe_d extractable Wavelength measured Fe_d [%] 5-20 masked pixel Prediction model of free iron oxide content 2.0 - 2.5

Richter et al., 2009, SSSAJ

ELMHOLTZ

P Global Surveillance System for Assessing and Monitoring of Desertification

HYSOMA toolbox for operational soil properties mapping

- Development of higher performing soil algorithms as demonstrators for end-to-end processing chains with harmonized quality measures
- Automatic generation of semiquantitative soil maps (Soil moisture content, organic carbon, iron oxides, clays, carbonates content) + quality layer map
- Fully quantitative soil mapping based on field calibration
- Currently distributed for airborne users: www.gfz-potsdam.de/hysoma
- ✓ >100 users worldwide!

Chabrillat et al., 2012

European Facility for Airborne Research

HELMHOLTZ

Soil erosional states mapping in agricultural semi-arid spain

 Characterisation of soil erosion indicators in a Mediterranean rainfed cultivated region (Camarena, Central Spain)

SU test site in fallow (08.Aug.11) and with wheat cultivation (23.Mar.12)

Mean field spectra of the different erosion and accumulation stages

GFZ

Wavelength (nm)

Distribution of soil erosion stages and accumulation zones using the SVM classifier, AISA Eagle/Hawk data @3m

Schmid et al., 2015, JSTARS

SEDMEDHY - Soil Erosion Detection within MEDiterranean agricultural areas using Hyperspectral data

SU location: Carbonatic area

Enhanced derivation of fractional ground cover for hydrological model parameterization

Airborne hyperspectral imagery (April 2011) Isabena catchment, northern Spain

Foerster et al., 2013

Enhanced derivation of fractional ground cover for hydrological model parameterization

ELMHOLTZ ASSOCIATION

Thermal IR remote sensing: Potential for soil studies

GFZ CSIRO/ESDAC - Soil properties extraction in coarse-texture soils in the Western Australian Wheatbeit region

Example: PLSR prediction models for common soil properties based on VNIR-SWIR and Thermal IR (TIR) spectroscopy

Retrieval of soil erosion relevant								
parameters in the Western		Spectral			PLSR prediction models			
Australia Wheatbelt region	Y	range	n	f	R² _{adj}	RMSEP	expl. Y var.	
VNIR (0.4-1.0 µm, Electron Transitions)	% clay	VNIR- SWIR	88	5	0.87	3.98	86.68 %	
iron oxides and hydroxides (hematite, goethite)		TIR	88	4	0.87	3.23	87.29 %	
SWIR (1.0-2.5 µm: Vibration Transitions - overtones and		VNIR- SWIR-TIR	87	5	0.91	2.89	90.67 %	
combinations)OH bearing silicates (kaolinite, smootite)	% sand	VNIR- SWIR	87	5	0.84	4.85	83.95 %	
- Chlorites, Calcite, etc		TIR	88	3	0.947	3.5	94.72 %	
TIR (3-5 and 7-12 μm: Fundamental Vibrations of Si-O		VNIR- SWIR-TIR	87	5	0.94	3.1	93.57 %	
- non-OH-bearing silicates (e.g.: Qz, feldspars, garnets, pyroxenes		VNIR- SWIR	84	6	0.79	0.13	78.67 %	
and olivine) - distinguish silica, guartz, mafic,	% OC	TIR	83	7	0.75	0.14	75.41 %	
carbonate mineral groups		VNIR- SWIR-TIR	83	5	0.85	0.1	84.55 %	
z	· · · ·	Ε	isele e	et al., :	2013, 20 ⁻	15		

G

HELMHOLTZ

ASSOCIATION

GFZ

Hyperspectral imagery and soil science studies

- Main field of applications
 - **§** Soil mapping and classification
 - Soil genesis and formation
 - Soil water content
 - Soil degradation (salinity, erosion, deposition), soil contamination
- Global increasing interest
 - Soil protection (EU directive 2006 21/EC)
 - **§** Evaluation and monitoring of soil quality and quantity
 - Soil function (e.g. water storage, carbon storage) and threats (e.g. acidification, soil erosion)
 - S Demand for digital soil mapping (www.globalsoilmap.net)
- ✓ Optical RS benefits: upper surface sensing (<50 mm), can map SM & a wide range of soil properties</p>

- Core funding from Germany's Federal Ministry Economics and Technology
- Currently under construction phase, launch ~mid 2018

GFZ

ielmholtz Centre

POTSDAN

▼ GFZ – soil/geology applications

- Environmental Mapping and Analysis
 Programme (GFZ/DLR)
- Full range VNIR/SWIR satellite imaging spectrometer for quantitative surface parameter retrieval at 30m scale
- Frequent coverage for monitoring on global basis
- Open data policy

LMHOLTZ

EnMAP mission and instrument overview

- Push-broom imager
- Spectral range from 420 nm to 2450 nm (VNIR-SWIR)
- high spectral resolution of 6.5 nm (VNIR) and 10 nm (SWIR); ~ 240 bands
- high SNR of 500 @ 495 nm; 180 @ 2200 nm

- Swath width 30 km
- Pixel size 30 m at nadir
- Repeat cycle of 27 days
- ± 30 ° off-nadir pointing for frequent revisit (≤4 days)
- 5000 km total swath length acquisition per day
- Mission Life Time of 5 years
- Currently in construction phase, launch ~mid-2018

Current research: Potential from spaceborne platforms

 Upcoming high-quality imaging spectroscopy data expected from next generation orbiting sensors to be launched soon, e.g. EnMap (2018), HISUI (2018), Shalom (2020), HyPXIM (>2023), HypSRI (>2023)

From local à regional à global scale

- **§** Support to soil related EU policy areas and different stakeholders
- **§** Global soil <u>mapping</u> and <u>monitoring</u>
- Demonstration of potential of hyperspectral imagery for soil mapping applications from airborne to satellite scale
 - Simulation of satellite images based on existing datasets
 - § Algorithm development
 - § Feasibility and expected accuracy for delivery of soil products

Case study : Soil properties mapping in bare crops

Semi-arid Mediterranean Spain

- Parameters of interest: Mineralogy (Clay, iron oxide, CaCO₃ content)
- **§** In-situ validation dataset: 50 samples
- Airborne HyMap imagery: 126 sp. bands ~400-2450nm, SSD 12-17 nm. GSD 4.5m

▼ Luxembourg

- Parameter of interest: Soil organic carbon (SOC) content
- **§** In-situ validation dataset: 81 samples
- Airborne AHS-160 imagery: 20 sp. bands ~442-1019nm, SSD 27-30 nm. GSD 2.6m

Retrieval of soil mineralogical content (AutoPLSR): Soil maps and prediction model performances vs. Ground-truth data

Retrieval of soil OC content (AutoPLSR): Soil maps and prediction model performances vs. Ground-truth data

Overall agreement from airborne to spaceborne **Slighly** reduced prediction accuracy at spaceborne level

Digital soil mapping from space: Opportunities and challenges

- Optical surface soil prediction models: Good accuracy depending on soil parameter, observational and environmental conditions
- Validation with field data
- ▼ But: Is this enough?
 - Subser requirements are very variable !
 - à Global soil maps vs. quantitative requirements (JRC 3% OC g/kg)
 - § Models are dependent on local observations
 - à Need of large soil spectral database for model stability
 - S Models are influenced by state of surface (Soil moisture is a problem!)

Perspectives: The LUCAS spectral library

Current status:

- § 23 European countries
- § ~20,000 high quality spectral readings

§ Metadata: Clay, silt, sand, OC, pH, CEC, CaCO₃, Geographical coordinates, land use, etc

Perspectives: Demmin - TERENO Northeastern German Lowland Observatory database

Objectives

- calibration and validation of national / international remote sensing missions
- supplying environmental data for developing of new algorithms in remote sensing and environmental modelling
- practical test for the integration of remote sensing data in agricultural practice

Demmin - permanent data infrastructure

Data infrastructure

Agrarian meteorological network: 40 weather stations (GFZ: 20, DLR: 20)

Soil moisture measuring network: 62 gaging stations

Soil documentation & soil analysis at each soil moisture station:

~110 soil profiles , ~1 m depth; Parameter: texture, pH, CaCO3, OM

Crop data from association of local agricultural companies (IG Demmin), Yield Mapping

Phenology data:

5 observation stations (German Meteorological Service)

Demmin soil spectral library & soil analyses: ~850 soil samples, chemically and spectral analysed

Demmin – Field and flight experiments

Multiscale observations

Multitemporal airborne acquisitions (2015)

EnMAP-flight campaigns

Airborne hyperspectral images and associated in-situ data

provided free of charge to science community under CC BY-SA Licence

Search metadata portal at www.enmap.org → data

Datasets published as data publications (with DOI)

Technical Report will be provided with each dataset (documentation of data acquisition, processing, quality etc.)

New Main Lines Autoine Lines

EnMAP - Flight campaigns http://www.enmap.org/?q=flightbeta

Learned improvements in the advector light currence share laters canceled and be the total of the LobitPD properties on paragraps to separate transition and an experimental state and the complete currence and an experimental state and the complete currence and the complete currence and the complete currence and the complete currence and the cur

anny an this welanise are available first of charge and anter a Quartie Constant Mannak (C.B. 34.3.2 theor test ance and is estimate to this following terms and conditions:

GFZ HySpex VNIR/SWIR installed in aircraft of FU Berlin

Demmin – Soil patterns

of Economics and Technology

Demmin - Soil pattern analysis for the determination of organic matter based on multispectral data at field and landscape scale

Result: OM determination at the field-scale using local prediction model

ELMHOLTZ

Outlook: Global soil mapping and monitoring

▼ Future developments

- Spectral model improvements
 - Link with soil database (Demmin, EU LUCAS)
 - Simulation/correction of disturbing factors (vegetation, soil moisture, illumination)
- Use of combined optical and radar
 RS for additional soil information
- Sensing for soil studies
- Suse of multitemporal information combined with hyperspectral

