Ground-based remote sensing of precipitation for hydrological applications

Remko Uijlenhoet Hydrology and Quantitative Water Management Group

Why should hydrologists care about rainfall in the first place?

(Victoria Roberts, 2000)

Stores and fluxes of water on earth

Rainfall variability over a range of scales

Average of ALL AVAILABLE Rainfall mm/dd (3843) 1998 to 2007

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

10

50 40

30

20

Map of Europe – according to hydrologists

WAGENINGEN UNIVERSITY WAGENINGENUR

Close-up of a river catchment

WAGENINGEN UNIVERSITY WAGENINGEN UR

(~1600 km² Ourthe catchment, tributary of Meuse)

Rainfall-runoff processes; design/planning

Hupsel Brook (6.5 km²), 26 August 2010: nearly 160 mm of rainfall in 24 h (T > 1000 y)

WAGENINGEN UNIVERSITY WAGENINGEN UR

Flash flood early warning systems

(Slenaken flash flood 28–29 July 2012)

WAGENINGEN UNIVERSITY WAGENINGEN UR

Rainfall measurements for hydrology and meteorology

(Victoria Roberts, 2000)

Satellites need ground truthing

WAGENINGEN UNIVERSITY WAGENINGEN UR

Global weather radar coverage incomplete

(Heistermann et al., 2012)

Number of rain gauges rapidly declining

Microwave links from cell. comm. networks

S Potential over poorly gauged regions / continents
S Urban areas poorly gauged, but high cell phone density

(identim / Shutterstock)

Many more microwave links than gauges

WAGENINGEN UNIVERSITY WAGENINGEN UR

WAGENINGENUR

Daily local (left) and 15-min regional (right) comparison

⁽Overeem et al., 2013)

WAGENINGEN UNIVERSITY WAGENINGENUR

Principle of rain estimation using microwave links

(Victoria Roberts, 2000)

(Beer-Bouguer-Lambert law of extinction)

 $\frac{P(L)}{P_0(L)} = \exp\left|-\frac{\ln 10}{10}\int_0^L k(s)ds\right|$

 $\left| \overline{k} = \frac{10}{L} \log \right| \frac{P_0(L)}{P(L)}$

(identim / Shutterstock)

WAGENINGEN UNIVERSITY WAGENINGEN UR

(specific attenuation coefficient, dB km⁻¹)

$$k = \frac{1}{\ln 10} \int_{0}^{\infty} \sigma_{E}(D) N_{V}(D) dD$$

(rainfall rate, mm h⁻¹)

 ∞ $R = 6\pi \times 10^{-4} \int D^3 v(D) N_V(D) dD$

(identim / Shutterstock)

WAGENINGEN UNIVERSITY WAGENINGEN UR

(drop size distribution – DSD)

(identim / Shutterstock)

(Mie scattering cross-sections)

WAGENINGEN UNIVERSITY WAGENINGEN UR

(identim / Shutterstock)

Basic principle: power law R-k relation

${\sf Method}$

Rainfall retrieval algorithm

Method

- A 15-min period is wet if nearby links show a mutual decrease in minimum received powers.
- Correction for signal fluctuations during dry weather. Reference signal level is determined. Apply filter to remove outliers.

• Calculate mean rainfall intensity from P_{min}^{C} and P_{max}^{C} .

$$A_{min} = P_{ref} - P_{max}^{C}$$

$$A_{max} = P_{ref} - P_{min}^{C}$$
(1)

$$\langle R \rangle = \alpha \cdot a \left(\frac{A_{max} - A_a}{L} \right)^b + (1 - \alpha) \cdot a \left(\frac{A_{min} - A_a}{L} \right)^b \tag{2}$$

$$R\rangle = \alpha \langle R_{max} \rangle + (1 - \alpha) \langle R_{min} \rangle \tag{3}$$

Calibrate rainfall retrieval algorithm with daily radar rainfall depths. $A_a = 2.3 \text{ dB}$ 12-day calibration dataset $\alpha = 0.335$ b = 0.79 - 1.03 (13-40 GHz)(Overeem et al., 2013; 2015)

Rainfall retrieval in Rotterdam

S Daily rainfall § 1086 days S Validation Selas close to 0 Scorrelation > 0.6

Uncertainties in rain estimates by microwave links

(Victoria Roberts, 2000)

Uncertainty in mw link rainfall estimation

Mean relative error (in %, left panel) and associated uncertainty (in %, right panel) between the estimated and the true path-averaged rain rate (the "+" signs correspond to real microwave links)

WAGENINGEN UNIVERSITY Wageningen UR

Density and availability of link network

WAGENINGEN UNIVERSITY WAGENINGEN UR

Link lengths and frequencies

Link orientations and lengths

Actual and simulated microwave links

WAGENINGEN UNIVERSITY WAGENINGEN UR

WURex14–15: Experimental setup and first results

(Victoria Roberts, 2000)

Wageningen Urban Rainfall Experiment

WAGENINGEN UNIVERSITY WAGENINGEN UR

Backbone: 2.2 km multi-frequency link

FORUM BIOTECHNION Scintec BLS 900 NIR scintillometer 🔆 Nokia 38 GHz (f<mark>ormer</mark> operational T-Mobile link RAL 38 GHz dual-pol differential phase link RAL 26 GHz link 1-min time lapse cameras All signals logged at 20 Hz

WAGENINGEN UNIVERSITY WAGENINGEN UR

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

(Van Leth, 2015)

Ground truth: 5 Parsivel disdrometers*

WAGENINGEN UNIVERSITY WAGENINGEN UR

Rainfall event on August 26th, 2014

Rainfall rates and cumulative rain amounts

Dew on antennas and rainfall events

Dew on antennas and a few droplets

Wet antenna experiment

Wet antenna experiment – results

Time lapse cameras to monitor antennas

WAGENINGEN UNIVERSITY WAGENINGEN UR

What is going on here ??!!

OK, that explains ...

ITELAPSE CATERA V.1.0 2014/08/27 DE:38:15

WAGENINGEN UNIVERSITY

Opportunities and challenges

(Victoria Roberts, 2000)

Rainfall retrieval in Amsterdam

August 30st, 2012

WAGENINGEN UR

ETW/

August 30th, 2012, 19h30

Comparison of different rainfall sensors as forcing for Wageningen Lowland Runoff Simulator (WALRUS)

NAGENINGEN UNIVERSITY WAGENINGENUR

Rainfall observations 9–11 Sep 2013

Hydrological impact Hupsel Brook

Hourly catchment rainfall for one full year

WAGENINGEN UNIVERSITY WAGENINGEN UR

Propagation of rainfall errors in catchment

WAGENINGEN UNIVERSITY

R&D Partnership to develop a 'National Virtual Weather Station' starting in Brazil with a view to replicate across Emerging Markets

Sparse coverage of automated rain-gauges in Brazil, January, 2011

Sparse coverage of automated rain-gauges* in Petropolis, Rio de Janeiro, January, 2011

Petropolis region has 130 automatic raingauges by 2014

WAGENINGEN UNIVERSITY WAGENINGEN

PLANETARY SKIN

Dense coverage of cellular radio base stations in Brazil, January, 2011

Dense coverage of cellular microwave links in Petropolis, Rio de Janeiro, January, 2011

First measurements on African continent

Doumounia et al. (2014, GRL)

WAGENINGEN UNIVERSITY WAGENINGEN UR

Raincell Africa Training School

©2013 GSM Association and CollinsBartholomew Ltd.

(Gosset et al., 2015)

Souagadougou, Burkina Faso, 30 March – 2 April 2015

WAGENINGEN UNIVERSITY WAGENINGEN UR

Remko.Uijlenhoet @wur.nl

(Victoria Roberts, 2000)

