TERENO Workshop: The Drought Year 2018 Insights From the TERENO Observatories

Reinhard Hüttl

GFZ German Research Centre for Geosciences

Potsdam, 11 September 2019

2018 – Year of Drought and Heat

2018 in Germany: Year of Extremes

- Hottest year since beginning of weather recording (1881)
- Sunniest year since start of comprehensive recording (1951)
- Among the three driest years since 1881 (586,3 mm)
- Eight of the nine hottest years since 1881 fall into the 21. century

2018: Records in Brandenburg

- Hottest year since beginning of weather recording
- **Driest** year since beginning of weather recording (390,4 mm)
- More than **500 forest fires** (>1300 ha forest fire area)
- Harvest losses (eg., worst potato harvest since Unification in 1989)

Current Forest Damages in Germany

- 2017-2019: most serious forest damages since the "Waldsterben" (forest dieback) in the 1970s/80s
 (→ "Waldsterben 2.0")
- Affected at least **110,000 ha** in southern and central Germany (especially Norway spruce)
- **Possible causes:** Storms, drought and insects (bark beetles)
- Clearing and restructuring of the damaged areas
 (→ Establishment of mixed forest ecosystems adapted to
 the "new" site conditions)
- Total costs amount to € 2.8 billion
- Federal Government announces **emergency program** for 2020 and "forestry summit" in September 2019
- In addition, extensive development and promotion of **forestry research** is necessary

Dead stand of Spruce in Harz mountains (Photo: S. Arend)

Current Forest Damages Globally

- 2018: increase in deforestation compared to previous years
- During the last 50 years, about 800,000 km² of rainforest have been cleared (= 17 % of the original forest area)
- Nördlicher Polarkreis-Moskau RUSSLAND Quellen: Google Earth, Fire Information for Resource Maňagement System (FIRM5)

2) Forest fires - summer of 2019 in Siberia

- In 2019, about 32,000 km² of forest burned (equivalent to the area of Brandenburg)
- Soot particles promote permafrost thawing and ice melting in this region and in the neighboring Arctic

Climate Change Affects Jetstream over Europe

- Climate change warms the Arctic faster than other regions
- Result: temperature difference between high and low latitudes decreases
- Jetstream weakens and begins to meander more intensively

Fig.: Earth Simulator – earth.nullschool.net

GFZ

ABOUT US CENTRE RESEARCH SCIENTIFIC INFRASTRUCTURE

TERENO Workshop: The drought year 2018 - Insights from the TERENO Observatories

This year's TERENO workshop deals with the drought year 2018.

When: 11.-13. Sep 2019, 09:00 - 16:00

- Where: GFZ Campus Telegrafenberg Potsdam, building H, lecture hall H
- Who: Dr. Ingo Heinrich, Coordinator TERENO Northeast

TERENO (Foto: M. Zöllner, GFZ).

🖾 Save appointment

Here you can download the date as ics format (ics-Format can be imported from all common calendars)

Q

Regional Impact of the Extreme Year 2018 TERENO NE German Lowland Observatory

Regional set of laboratories in the temperate lowlands:

Monitoring

The Year 2018 – Tree growth in Müritz N.P.

Annual tree growth: Species P syl Strong decline in pine and oak, average growth of beech

Growth Period:

Shorter for all species, most extreme for oak and beech

More details later by our PhD student Daniel Balanzategui

Growth Rate:

Beech compensated reduced growth period by enhanced growth rate

The year 2018 – Monitoring of Lake Tiefer See

- Comparison of 2016 average year with wet year 2017 and dry year 2018
- Less precipitation in 2018, water temperatures several degrees higher
- High oxygen isotope values (δ^{18} O)
- Corresponds with high evaporation loss and correlates with the decrease of the lake level by about 80 cm
- Extreme year 2018: interesting situation for TERENO monitoring
- Improved understanding of processes as nessessary basis for improved climate reconstructions

The Year 2018 – View from Space

- Mean values of temperature, evaporation and growing days at TERENO site DEMMIN (43 climate stations!) for the period 2005 to 2018
- 2018 driest (380mm) and hottest year (temperature sum 1263 °C)
- In contrast, 2015 wet and 2017 cool:
- temperature sums of only 852 °C in 2015
- precipitation of 712 mm in 2017

The Year 2018 – View from Space

- NDVI (vegetation index) map for TERENO site DEMMIN at acquisition dates 4 July 2015 (left) und 3 July 2018 (right)
- Indicator for the vitality of vegetation: high vitality in 2015, low vitality in 2018
- Histogram: one peak in 2015, two peaks in 2018
- 2018: Early harvest at many sites (e.g., barley already in July), in contrast to 2015
- Results/experience from DEMMIN as solid basis for projects to improve agriculture, e.g, AgriFusion, JECAM and CoolFarm

The Year 2018 – Impacts on Northern Wetlands Polder Zarnekow

• Water level below surface from August to October

2018 Drought – CO₂ & CH₄ Fluxes

- Relatively high CO₂ uptake during growing season 2018
- probably result of massive biomass increase by expanding vegetation
- \rightarrow triggered by dry year 2016? \rightarrow temporal drying may enhance vegetation growth

Drought-inflicted wetlands as a natural microbial laboratory

	Methane oxidizers
Pre drought total population size	4.1 × 10 ⁷ g ⁻¹
Post drought total population size	2.7 x 10 ⁷ g ⁻¹
% community pre drought	0.05
% community post drought	1.3

High responsiveness in particular of methane oxidizers despite relatively stable population size

Conclusions (1)

The year 2018 has left "deep traces" in the landscape of Northeastern Germany:

- \Rightarrow Many forest fires
- ⇒ Wetlands fell dry, with unknown consequences for microbial communities and gas exchange
- ⇒ Tree growth declined significantly in oak and pine, but beech could partly compensate via enhanced growth rate

Conclusions (2)

- Extreme years (e.g. 2018) present unique opportunities to analyze regional impacts of climate change
- Improved co-operations between TERENO, MOSES, ESM, DigEarth and other research activities are needed to further advance our understanding of system Earth
- From these findings, options for improved adaptation strategies to climate change and landscape change will be developed

More on TERENO Northeast

• in the current issue of

System Erde GFZ-Journal

systemerde.gfz-potsdam.de

Welcome, Thank You And Good Luck for the Workshop

