

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Application oriented monitoring of agrarian ecosystems and localization of droughts - a question of data integration

Prof. Dr. habil. Christopher Conrad

Department of Geoecology

Institute of Geosciences and Geography, University of Halle-Wittenberg

Immense pressure on agrarian ecosystems

- Task: Economic, social and ecological sustainability
- Ongoing changes increase vegetation periods, provide more CO₂ for production, but also more O₃, increased number of extreme events (Gömann et al. 2017)
- Major requirements for agricultural sector: Improved monitoring, scientific analysis and consultancy

Increasing farm size, www.bmel.de

Christopher Conrad

Immense pressure on agrarian ecosystems

 Remote sensing can be very helpful monitoring tool

Increasing farm size, www.bmel.de

Christopher Conrad

New technical opportunities

Multi- "sensor/temporal/stage" analysis

Christopher Conrad

TERENO Workshop 2019 GFZ Potsdam

5

Innovative sequential masking

Christopher Conrad

Dense time series of remote sensing information

*	Bundesministeriu für Wirtschaft und Energie

Gao, F., Masek, J., Schwaller M. and Hall, F. On the blending of the Landsat and MODIS surface reflectance: predict daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing. 44 (8): 2207-2218. 2006.

Christopher Conrad

Dense observations of biophysical parameters

Validation of application based on fused time series

PhD Thorsten Dahms, Uni Würzburg

Example FPAR/LAI of Winter Wheat

Dahms, T., Seissiger, S., Conrad, C., Borg, E. (2016): Modelling Biophysical Parameters Of Dahms, T., Conrad, C., Babu, D.K., Schmidt, M., Borg, E. (2017): Derivation of biophysical Maize Using Landsat & Time Series. ISPRS Annals of the Photogrammetry, Retered of Remote Series and Spatial Information Sciences XLI(B2): 171-175. Sensing Symposium (IGARSS), Fort Worth, TX, 2017, pp. 4374-4377

Site-specific biomass modelling and yield estimations

Utilization of a light use efficiency model:

Integration of remote sensing-based biophysical parameters with climate data and crop-specific information

Application:

Yield level map (based on multi-annual data)

- Support of soil sampling and fertilization

Christopher Conrad

Regional actual evapotranspiration / Water consumption in agriculture (S-SEBI)

Auswärtiges Amt

CAWA

Schönbrodt-Stitt, S.; Conrad, C.; Dimov, D.; Ergashev, I.; Löw, F.; Morper-Busch, L.; Muminov, S.; Ruziev, I.; Schorcht, G.; Solodky, G.; Sorokin, D.; Stulina, G.; Toshpulatov, R.; Zaitov, S.;

Kitapbayev, A.; Unger-Shayesteh, K. (2018): The

WUEMoCA Tool for Monitoring Irrigated Cropland Use and Water Use Efficiency at the Landscape Level of

the Aral Sea Basin. In: Novel Methods and Results of Landscape Research in Europe, Central Asia and Siberia, Vol. 4 Optimising Agricultural Landscapes, 4 (72), 351 - 356.

Gunther Schorcht, Greenspin

Drought year 2018

Deviation of the vegetation signal in June 2018 from the medium-term average (19 years of MODIS) _{Source: Sophie Reinermann, DLR}

Impact of severe drought and heat wave Sources: "Mitteldeutsche Zeitung" and "Volksstimme" 2018

Christopher Conrad

Spatial pattern of EVI anomalies in Germany CORINE class grassland

¹³ Reinermann et al. (2019)

Spatial pattern of EVI anomalies in Germany CORINE class cropland

Reinermann et al. (2019)

Temporal pattern of EVI anomalies in Germany

Reinermann, S., Gessner, U., Asam, S., Kuenzer, C., & Dech, S. (2019). The Effect of Droughts on Vegetation Condition in Germany: An Analysis Based on Two Decades of Satellite Earth Observation Time Series and Crop Yield Statistics. *Remote Sensing*, *11*(15), 1783. https://doi.org/10.3390/rs111 51783

Source: Sophie Reinermann, DLR

Christopher Conrad

Christopher Conrad

- Dry storages
- Reduced yields

Available water capacity measured through soil moisture sensors in the field: Moist year \Leftrightarrow dry year, Source: Christian Hohmann, GFZ

• 2016 lower yields than in 2018?

Wheat yields of two farmers in DEMMIN in comparison to the climatic water balance Source: Christian Hohmann, GFZ

0 500 1000 1500 2000 m

 High diversity of biomass development on the fields

 Influence of soil texture (and field capacity) on crop growth (LAI)

Example: Average Cropping Intensity in the Aral Sea Basin 2000-2012 (MODIS)

Christopher Conrad

The dependency of cropping intensity from natural runoff

2 0°, 0°, 0°; 0°, 0°; 0°, 0°; 0°; 0°;

Source SIC-ICWC Regional Information System on Water and Land Resources in the Aral Sea basin (CAREWIB). http://www.cawater-info.net

Conrad, C. et al. (2016)

Christopher Conrad

Data integration – ecological in situ data

DEMMIN is the German validation site for remote sensing products in an agricultural landscape

Phänologie-Stationen (DWD)

Excellent RS data basis Environmental measurement network:

- ~40 meteorological stations
- ~6 Soil moisture observation points
- Eddy Covariance System

Lysimeter station

JECAM

Soil maps, phenological observations (DWD)

Joint Experiment for Crop Assessment and Monitoring www.jecam.org

Christopher Conrad

Data integration – ecological in situ data

- Standardized data aquisition (Reader)
- Field lab with leaf scanner and dry oven
- Fieldidata pool (LAI 2200, ...)

TERENO Workshop 2019 GFZ Potsda

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

Summary and conclusions

- New technical possibilities for Agricultural Monitoring improved the options for deriving soil and vegetation status as well as energy, water and gas exchange at the land surface, or phenological changes.
- The data allow assessments of climate impacts, but also farming practices or ecosystem services.
- Data integration is essential for
 - Modeling of parameters (increase accuracy)
 - Validation
 - Driver analysis/understanding reasons
 - Services for real applications

Christopher Conrad

Conclusions

Even through drought detection appears to be simple (NDVI@work):

- Vegetation signals are composite of various factors, e.g. agricultural practices
 - in Germany for instance increased EVI at the end of the drought year 2018 may be attributed to increased cultivation of intermediate crops
 - In future: irrigation?
- more detailed analyses are methodological challenging and require improved integration of geodata:
 - ⇒Scientific Earth system modeling
 - \Rightarrow Risk assessments
 - \Rightarrow Early warning systems

Strengthen University Cooperation with TERENO

Christopher Conrad

- Sophie Reinermann, Dr. Sarah Asam, Prof. Dr. Erik Borg, DLR
- Christian Hohmann, Dr. Daniel Spengler, Dr. Sibylle Itzerott, GFZ
- Thorsten Dahms, Uni of Würzburg
- Jakob Zabel, Uni Halle-Wittenberg

Many colleagues, project members, data providers, etc.

Thank you for your attention!

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Thank you for your attention!

Application oriented monitoring of agrarian ecosystems and localization of droughts - a question of data integration

Prof. Dr. habil. Christopher Conrad Department of Geoecology

Institute of Geosciences and Geography, University of Halle-Wittenberg